Search results
Results from the WOW.Com Content Network
In geometry, a hendecagon (also undecagon [1] [2] or endecagon [3]) or 11-gon is an eleven-sided polygon. (The name hendecagon, from Greek hendeka "eleven" and –gon "corner", is often preferred to the hybrid undecagon, whose first part is formed from Latin undecim "eleven". [4])
A pentagon is a five-sided polygon. A regular pentagon has 5 equal edges and 5 equal angles. ... 1: hena-11: hendeca-21: ... Sides Names 1: henagon: monogon: 2: digon ...
The ancient Greek mathematicians knew how to construct a regular polygon with 3, 4, or 5 sides, [11]: p. xi and they knew how to construct a regular polygon with double the number of sides of a given regular polygon. [11]: pp. 49–50 This led to the question being posed: is it possible to construct all regular n-gons with compass and straightedge?
The white polygon lines represent the "vertex figure" polygon. The colored faces are included on the vertex figure images help see their relations. Some of the intersecting faces are drawn visually incorrectly because they are not properly intersected visually to show which portions are in front.
As with all odd regular polygons and star polygons whose orders are not products of distinct Fermat primes, the regular hendecagrams cannot be constructed with compass and straightedge. [4] However, Hilton & Pedersen (1986) describe folding patterns for making the hendecagrams {11/3}, {11/4}, and {11/5} out of strips of paper. [5]
A regular digon has both angles equal and both sides equal and is represented by Schläfli symbol {2}. It may be constructed on a sphere as a pair of 180 degree arcs connecting antipodal points, when it forms a lune. The digon is the simplest abstract polytope of rank 2. A truncated digon, t{2} is a square, {4}. An alternated digon, h{2} is a ...
A triangulated polygon with 11 vertices: 11 sides and 8 diagonals form 9 triangles. Every simple polygon can be partitioned into non-overlapping triangles by a subset of its diagonals. When the polygon has n {\displaystyle n} sides, this produces n − 2 {\displaystyle n-2} triangles, separated by n − 3 {\displaystyle n-3} diagonals.
A tangential polygon (one that has an incircle tangent to all its sides) is equilateral if and only if the alternate angles are equal (that is, angles 1, 3, 5, ... are equal and angles 2, 4, ... are equal). Thus if the number of sides n is odd, a tangential polygon is equilateral if and only if it is regular. [1]