Search results
Results from the WOW.Com Content Network
The use of Clinical Data Repositories could provide a wealth of knowledge about patients, their medical conditions, and their outcome. The database could serve as a way to study the relationship and potential patterns between disease progression and management. The term "Medical Data Mining" has been coined for this method of research.
Health care analytics is the health care analysis activities that can be undertaken as a result of data collected from four areas within healthcare: (1) claims and cost data, (2) pharmaceutical and research and development (R&D) data, (3) clinical data (such as collected from electronic medical records (EHRs)), and (4) patient behaviors and preferences data (e.g. patient satisfaction or retail ...
SuperCROSS – comprehensive statistics package with ad-hoc, cross tabulation analysis; Systat – general statistics package; The Unscrambler – free-to-try commercial multivariate analysis software for Windows; Unistat – general statistics package that can also work as Excel add-in; WarpPLS – statistics package used in structural ...
The Healthcare Cost and Utilization Project (HCUP, pronounced "H-Cup") is a family of healthcare databases and related software tools and products from the United States that is developed through a Federal-State-Industry partnership and sponsored by the Agency for Healthcare Research and Quality (AHRQ).
Galaxy is a web platform for data-intensive biology using geographically-distributed supercomputers. [56] LabKey Server is an extensible platform for integrating, analyzing and sharing all types of biomedical research data. It provides secure, web-based access to research data and includes a customizable data processing pipeline.
There have been some efforts to define standards for the data mining process, for example, the 1999 European Cross Industry Standard Process for Data Mining (CRISP-DM 1.0) and the 2004 Java Data Mining standard (JDM 1.0). Development on successors to these processes (CRISP-DM 2.0 and JDM 2.0) was active in 2006 but has stalled since.
Biomedical data science is a multidisciplinary field which leverages large volumes of data to promote biomedical innovation and discovery. Biomedical data science draws from various fields including Biostatistics , Biomedical informatics , and machine learning , with the goal of understanding biological and medical data.
Predictive analytics statistical techniques include data modeling, machine learning, AI, deep learning algorithms and data mining. Often the unknown event of interest is in the future, but predictive analytics can be applied to any type of unknown whether it be in the past, present or future.