enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Elasticity coefficient - Wikipedia

    en.wikipedia.org/wiki/Elasticity_coefficient

    The elasticity coefficient is an integral part of metabolic control analysis and was introduced in the early 1970s and possibly earlier by Henrik Kacser and Burns [1] in Edinburgh and Heinrich and Rapoport [2] in Berlin. The elasticity concept has also been described by other authors, most notably Savageau [3] in Michigan and Clarke [4] at

  3. Elasticity (physics) - Wikipedia

    en.wikipedia.org/wiki/Elasticity_(physics)

    In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...

  4. Linear elasticity - Wikipedia

    en.wikipedia.org/wiki/Linear_elasticity

    Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.

  5. Young's modulus - Wikipedia

    en.wikipedia.org/wiki/Young's_modulus

    The coefficient of proportionality is Young's modulus. The higher the modulus, the more stress is needed to create the same amount of strain; an idealized rigid body would have an infinite Young's modulus. Conversely, a very soft material (such as a fluid) would deform without force, and would have zero Young's modulus.

  6. Elastic modulus - Wikipedia

    en.wikipedia.org/wiki/Elastic_modulus

    The slope of the initial, linear portion of this curve gives Young's modulus. Mathematically, Young's modulus E is calculated using the formula E=σ/ϵ, where σ is the stress and ϵ is the strain. Shear modulus (G) Initial structure: Start with a relaxed structure of the material. All atoms should be in a state of minimum energy with no ...

  7. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.

  8. Dimensionless numbers in fluid mechanics - Wikipedia

    en.wikipedia.org/wiki/Dimensionless_numbers_in...

    Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.

  9. Elasticity of a function - Wikipedia

    en.wikipedia.org/wiki/Elasticity_of_a_function

    The elasticity at a point is the limit of the arc elasticity between two points as the separation between those two points approaches zero. The concept of elasticity is widely used in economics and metabolic control analysis (MCA); see elasticity (economics) and elasticity coefficient respectively for details.