enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Mathematical proof - Wikipedia

    en.wikipedia.org/wiki/Mathematical_proof

    The definition of a formal proof is intended to capture the concept of proofs as written in the practice of mathematics. The soundness of this definition amounts to the belief that a published proof can, in principle, be converted into a formal proof. However, outside the field of automated proof assistants, this is rarely done in practice.

  3. Van Hiele model - Wikipedia

    en.wikipedia.org/wiki/Van_Hiele_model

    The object of thought is deductive reasoning (simple proofs), which the student learns to combine to form a system of formal proofs (Euclidean geometry). Learners can construct geometric proofs at a secondary school level and understand their meaning. They understand the role of undefined terms, definitions, axioms and theorems in

  4. Mathematical logic - Wikipedia

    en.wikipedia.org/wiki/Mathematical_logic

    Dedekind's work, however, proved theorems inaccessible in Peano's system, including the uniqueness of the set of natural numbers (up to isomorphism) and the recursive definitions of addition and multiplication from the successor function and mathematical induction. In the mid-19th century, flaws in Euclid's axioms for geometry became known. [12]

  5. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    The Elements begins with plane geometry, still taught in secondary school (high school) as the first axiomatic system and the first examples of mathematical proofs. It goes on to the solid geometry of three dimensions. Much of the Elements states results of what are now called algebra and number theory, explained in geometrical language. [1]

  6. Direct proof - Wikipedia

    en.wikipedia.org/wiki/Direct_proof

    This meant that ancient geometry (and Euclidean Geometry) discussed circles. The earliest form of mathematics was phenomenological . For example, if someone could draw a reasonable picture, or give a convincing description, then that met all the criteria for something to be described as a mathematical “fact”.

  7. Deductive reasoning - Wikipedia

    en.wikipedia.org/wiki/Deductive_reasoning

    This theory of deductive reasoning – also known as term logic – was developed by Aristotle, but was superseded by propositional (sentential) logic and predicate logic. [citation needed] Deductive reasoning can be contrasted with inductive reasoning, in regards to validity and soundness. In cases of inductive reasoning, even though the ...

  8. Straightedge and compass construction - Wikipedia

    en.wikipedia.org/wiki/Straightedge_and_compass...

    Ancient Greek mathematicians first conceived straightedge-and-compass constructions, and a number of ancient problems in plane geometry impose this restriction. The ancient Greeks developed many constructions, but in some cases were unable to do so. Gauss showed that some polygons are constructible but that most are not.

  9. Mathematical induction - Wikipedia

    en.wikipedia.org/wiki/Mathematical_induction

    Despite its name, mathematical induction differs fundamentally from inductive reasoning as used in philosophy, in which the examination of many cases results in a probable conclusion. The mathematical method examines infinitely many cases to prove a general statement, but it does so by a finite chain of deductive reasoning involving the ...