enow.com Web Search

  1. Ad

    related to: how to solve inhomogeneous ode problems 5th edition

Search results

  1. Results from the WOW.Com Content Network
  2. Variation of parameters - Wikipedia

    en.wikipedia.org/wiki/Variation_of_parameters

    In mathematics, variation of parameters, also known as variation of constants, is a general method to solve inhomogeneous linear ordinary differential equations.. For first-order inhomogeneous linear differential equations it is usually possible to find solutions via integrating factors or undetermined coefficients with considerably less effort, although those methods leverage heuristics that ...

  3. Method of undetermined coefficients - Wikipedia

    en.wikipedia.org/wiki/Method_of_undetermined...

    Consider a linear non-homogeneous ordinary differential equation of the form = + (+) = where () denotes the i-th derivative of , and denotes a function of .. The method of undetermined coefficients provides a straightforward method of obtaining the solution to this ODE when two criteria are met: [2]

  4. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Intuitively, one can think of the inhomogeneous problem as a set of homogeneous problems each starting afresh at a different time slice t = t 0. By linearity, one can add up (integrate) the resulting solutions through time t 0 and obtain the solution for the inhomogeneous problem. This is the essence of Duhamel's principle.

  5. Annihilator method - Wikipedia

    en.wikipedia.org/wiki/Annihilator_method

    In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.

  6. Green's function - Wikipedia

    en.wikipedia.org/wiki/Green's_function

    If the problem is to solve a Dirichlet boundary value problem, the Green's function should be chosen such that G(x,x′) vanishes when either x or x′ is on the bounding surface. Thus only one of the two terms in the surface integral remains. If the problem is to solve a Neumann boundary value problem, it might seem logical to choose Green's ...

  7. Exponential response formula - Wikipedia

    en.wikipedia.org/wiki/Exponential_response_formula

    Complex replacement is used for solving differential equations when the non-homogeneous term is expressed in terms of a sinusoidal function or an exponential function, which can be converted into a complex exponential function differentiation and integration. Such complex exponential function is easier to manipulate than the original function.

  8. Fredholm alternative - Wikipedia

    en.wikipedia.org/wiki/Fredholm_alternative

    The Fredholm alternative can be applied to solving linear elliptic boundary value problems. The basic result is: if the equation and the appropriate Banach spaces have been set up correctly, then either (1) The homogeneous equation has a nontrivial solution, or (2) The inhomogeneous equation can be solved uniquely for each choice of data.

  9. Numerical methods for ordinary differential equations - Wikipedia

    en.wikipedia.org/wiki/Numerical_methods_for...

    Ernst Hairer, Syvert Paul Nørsett and Gerhard Wanner, Solving ordinary differential equations I: Nonstiff problems, second edition, Springer Verlag, Berlin, 1993. ISBN 3-540-56670-8. Ernst Hairer and Gerhard Wanner, Solving ordinary differential equations II: Stiff and differential-algebraic problems, second edition, Springer Verlag, Berlin, 1996.

  1. Ad

    related to: how to solve inhomogeneous ode problems 5th edition