Search results
Results from the WOW.Com Content Network
Statistical risk is a quantification of a situation's risk using statistical methods.These methods can be used to estimate a probability distribution for the outcome of a specific variable, or at least one or more key parameters of that distribution, and from that estimated distribution a risk function can be used to obtain a single non-negative number representing a particular conception of ...
In general, the risk () cannot be computed because the distribution (,) is unknown to the learning algorithm. However, given a sample of iid training data points, we can compute an estimate, called the empirical risk, by computing the average of the loss function over the training set; more formally, computing the expectation with respect to the empirical measure:
A risk–benefit ratio (or benefit-risk ratio) is the ratio of the risk of an action to its potential benefits. Risk–benefit analysis (or benefit-risk analysis) is analysis that seeks to quantify the risk and benefits and hence their ratio. Analyzing a risk can be heavily dependent on the human factor.
The theory of statistics provides a basis for the whole range of techniques, in both study design and data analysis, that are used within applications of statistics. [1] [2] The theory covers approaches to statistical-decision problems and to statistical inference, and the actions and deductions that satisfy the basic principles stated for these different approaches.
In financial mathematics, a risk measure is used to determine the amount of an asset or set of assets (traditionally currency) to be kept in reserve. The purpose of this reserve is to make the risks taken by financial institutions , such as banks and insurance companies, acceptable to the regulator .
The expected utility theory takes into account that individuals may be risk-averse, meaning that the individual would refuse a fair gamble (a fair gamble has an expected value of zero). Risk aversion implies that their utility functions are concave and show diminishing marginal wealth utility.
Another approach to model risk is the worst-case, or minmax approach, advocated in decision theory by Gilboa and Schmeidler. [22] In this approach one considers a range of models and minimizes the loss encountered in the worst-case scenario.
Incremental statistics also have applications to portfolio optimization. A portfolio with minimum risk will have incremental risk equal to zero for all positions. Conversely, if the incremental risk is zero for all positions, the portfolio is guaranteed to have minimum risk only if the risk measure is subadditive.