Search results
Results from the WOW.Com Content Network
The angle bisector theorem is commonly used when the angle bisectors and side lengths are known. It can be used in a calculation or in a proof. An immediate consequence of the theorem is that the angle bisector of the vertex angle of an isosceles triangle will also bisect the opposite side.
An angle bisector divides the angle into two angles with equal measures. An angle only has one bisector. Each point of an angle bisector is equidistant from the sides of the angle. The 'interior' or 'internal bisector' of an angle is the line, half-line, or line segment that
A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).
In a triangle, four basic types of sets of concurrent lines are altitudes, angle bisectors, medians, and perpendicular bisectors: A triangle's altitudes run from each vertex and meet the opposite side at a right angle. The point where the three altitudes meet is the orthocenter.
Every kite is an orthodiagonal quadrilateral, meaning that its two diagonals are at right angles to each other. Moreover, one of the two diagonals (the symmetry axis) is the perpendicular bisector of the other, and is also the angle bisector of the two angles it meets. [1] Because of its symmetry, the other two angles of the kite must be equal.
The three perpendicular bisectors meet in a single point, the triangle's circumcenter; this point is the center of the circumcircle, the circle passing through all three vertices. [20] Thales' theorem implies that if the circumcenter is located on the side of the triangle, then the angle opposite that side is a right angle. [21]
Draw the lines AX, BX and CX and their reflections in the internal bisectors of the angles at the vertices A, B, C respectively. The reflected lines are concurrent and the point of concurrence is the isogonal conjugate Y of X. Let the cevians AY, BY, CY meet the opposite sidelines of triangle ABC at A' , B' , C' respectively.
The general spherical triangle is fully determined by three of its six characteristics (3 sides and 3 angles). The lengths of the sides a, b, c of a spherical triangle are their central angles, measured in angular units rather than linear units. (On a unit sphere, the angle (in radians) and length around the sphere are numerically the same. On ...