enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nilpotent matrix - Wikipedia

    en.wikipedia.org/wiki/Nilpotent_matrix

    For example, any nonzero 2 × 2 nilpotent matrix is similar to the matrix []. That is, if is any nonzero 2 × 2 nilpotent matrix, then there exists a basis b 1, b 2 such that Nb 1 = 0 and Nb 2 = b 1. This classification theorem holds for matrices over any field. (It is not necessary for the field to be algebraically closed.)

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan block corresponding to λ is of the form λI + N, where N is a nilpotent matrix defined as N ij = δ i,j−1 (where δ is the Kronecker delta). The nilpotency of N can be exploited when calculating f(A) where f is a complex analytic function. For example, in principle the Jordan form could give a closed-form expression for the ...

  4. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    Since L and M commute, the matrix L + M is nilpotent and I + (L + M)/2 is invertible with inverse given by a Neumann series. Hence L = M. If A is a matrix with positive eigenvalues and minimal polynomial p(t), then the Jordan decomposition into generalized eigenspaces of A can be deduced from the partial fraction expansion of p(t) −1.

  5. Square root of a 2 by 2 matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_2_by_2_matrix

    A square root of a 2×2 matrix M is another 2×2 matrix R such that M = R 2, where R 2 stands for the matrix product of R with itself. In general, there can be zero, two, four, or even an infinitude of square-root matrices. In many cases, such a matrix R can be obtained by an explicit formula.

  6. Nilpotent - Wikipedia

    en.wikipedia.org/wiki/Nilpotent

    Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with n = 2 {\displaystyle n=2} ). Both are linked, also through supersymmetry and Morse theory , [ 6 ] as shown by Edward Witten in a celebrated article.

  7. Idempotent matrix - Wikipedia

    en.wikipedia.org/wiki/Idempotent_matrix

    For example, in ordinary least squares, the regression problem is to choose a vector β of coefficient estimates so as to minimize the sum of squared residuals (mispredictions) e i: in matrix form, Minimize ( y − X β ) T ( y − X β ) {\displaystyle (y-X\beta )^{\textsf {T}}(y-X\beta )}

  8. Split-quaternion - Wikipedia

    en.wikipedia.org/wiki/Split-quaternion

    (For example, ⁠ 1 / 2 ⁠ (1 + j) is an idempotent zero-divisor, and i − j is nilpotent.) As an algebra over the real numbers, the algebra of split-quaternions is isomorphic to the algebra of 2×2 real matrices by the above defined isomorphism. This isomorphism allows identifying each split-quaternion with a 2×2 matrix.

  9. Schur decomposition - Wikipedia

    en.wikipedia.org/wiki/Schur_decomposition

    There is also a real Schur decomposition. If A is an n × n square matrix with real entries, then A can be expressed as [4] = where Q is an orthogonal matrix and H is either upper or lower quasi-triangular. A quasi-triangular matrix is a matrix that when expressed as a block matrix of 2 × 2 and 1 × 1 blocks is