enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Distance from a point to a plane - Wikipedia

    en.wikipedia.org/wiki/Distance_from_a_point_to_a...

    Now the problem has become one of finding the nearest point on this plane to the origin, and its distance from the origin. The point on the plane in terms of the original coordinates can be found from this point using the above relationships between and , between and , and between and ; the distance in terms of the original coordinates is the ...

  3. Tarski's plank problem - Wikipedia

    en.wikipedia.org/wiki/Tarski's_plank_problem

    The (closed) set of points P between two distinct, parallel hyperplanes in R n is called a plank, and the distance between the two hyperplanes is called the width of the plank, w(P). Tarski conjectured that if a convex body C of minimal width w ( C ) was covered by a collection of planks, then the sum of the widths of those planks must be at ...

  4. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  5. Hesse normal form - Wikipedia

    en.wikipedia.org/wiki/Hesse_normal_form

    Distance from the origin O to the line E calculated with the Hesse normal form. Normal vector in red, line in green, point O shown in blue. In analytic geometry, the Hesse normal form (named after Otto Hesse) is an equation used to describe a line in the Euclidean plane, a plane in Euclidean space, or a hyperplane in higher dimensions.

  6. Projective geometry - Wikipedia

    en.wikipedia.org/wiki/Projective_geometry

    C3: If A and C are distinct points, and B and D are distinct points, with [BCE] and [ADE] but not [ABE], then there is a point F such that [ACF] and [BDF]. For two distinct points, A and B, the line AB is defined as consisting of all points C for which [ABC]. The axioms C0 and C1 then provide a formalization of G2; C2 for G1 and C3 for G3.

  7. Volume of an n-ball - Wikipedia

    en.wikipedia.org/wiki/Volume_of_an_n-ball

    Fix a plane through the center of the ball. Let r denote the distance between a point in the plane and the center of the sphere, and let θ denote the azimuth. Intersecting the n-ball with the (n − 2)-dimensional plane defined by fixing a radius and an azimuth gives an (n − 2)-ball of radius √ R 2 − r 2.

  8. Arrangement of hyperplanes - Wikipedia

    en.wikipedia.org/wiki/Arrangement_of_hyperplanes

    In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S.Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space.

  9. Centerpoint (geometry) - Wikipedia

    en.wikipedia.org/wiki/Centerpoint_(geometry)

    In statistics and computational geometry, the notion of centerpoint is a generalization of the median to data in higher-dimensional Euclidean space.Given a set of points in d-dimensional space, a centerpoint of the set is a point such that any hyperplane that goes through that point divides the set of points in two roughly equal subsets: the smaller part should have at least a 1/(d + 1 ...