Search results
Results from the WOW.Com Content Network
A maximum length sequence (MLS) is a type of pseudorandom binary sequence.. They are bit sequences generated using maximal linear-feedback shift registers and are so called because they are periodic and reproduce every binary sequence (except the zero vector) that can be represented by the shift registers (i.e., for length-m registers they produce a sequence of length 2 m − 1).
The alternative follows from Mercer's theorem: an implicitly defined function exists whenever the space can be equipped with a suitable measure ensuring the function satisfies Mercer's condition. Mercer's theorem is similar to a generalization of the result from linear algebra that associates an inner product to any positive-definite matrix .
Machine learning (ML) is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions. [1]
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
The prefix S n of S is defined as the first n characters of S. [5] For example, the prefixes of S = (AGCA) are S 0 = S 1 = (A) S 2 = (AG) S 3 = (AGC) S 4 = (AGCA). Let LCS(X, Y) be a function that computes a longest subsequence common to X and Y. Such a function has two interesting properties.
The stability of an algorithm is a property of the learning process, rather than a direct property of the hypothesis space , and it can be assessed in algorithms that have hypothesis spaces with unbounded or undefined VC-dimension such as nearest neighbor. A stable learning algorithm is one for which the learned function does not change much ...
Machine learning (ML) is a subfield of artificial intelligence within computer science that evolved from the study of pattern recognition and computational learning theory. [1] In 1959, Arthur Samuel defined machine learning as a "field of study that gives computers the ability to learn without being explicitly programmed". [ 2 ]