Search results
Results from the WOW.Com Content Network
A maximum length sequence (MLS) is a type of pseudorandom binary sequence.. They are bit sequences generated using maximal linear-feedback shift registers and are so called because they are periodic and reproduce every binary sequence (except the zero vector) that can be represented by the shift registers (i.e., for length-m registers they produce a sequence of length 2 m − 1).
In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.
In computer science, online machine learning is a method of machine learning in which data becomes available in a sequential order and is used to update the best predictor for future data at each step, as opposed to batch learning techniques which generate the best predictor by learning on the entire training data set at once.
Each convergence iteration takes time linear in the time taken to read the train data, and the iterations also have a Q-linear convergence property, making the algorithm extremely fast. The general kernel SVMs can also be solved more efficiently using sub-gradient descent (e.g. P-packSVM [ 50 ] ), especially when parallelization is allowed.
Apache SystemDS (Previously, Apache SystemML) is an open source ML system for the end-to-end data science lifecycle. SystemDS's distinguishing characteristics are: Algorithm customizability via R-like and Python-like languages. Multiple execution modes, including Standalone, Spark Batch, Spark MLContext, Hadoop Batch, and JMLC.
Almost any algorithm will work well with the correct hyperparameters [164] for training on a particular data set. However, selecting and tuning an algorithm for training on unseen data requires significant experimentation. Robustness: If the model, cost function and learning algorithm are selected appropriately, the resulting ANN can become robust.
The greedy algorithm heuristic says to pick whatever is currently the best next step regardless of whether that prevents (or even makes impossible) good steps later. It is a heuristic in the sense that practice indicates it is a good enough solution, while theory indicates that there are better solutions (and even indicates how much better, in ...
Filter feature selection is a specific case of a more general paradigm called structure learning.Feature selection finds the relevant feature set for a specific target variable whereas structure learning finds the relationships between all the variables, usually by expressing these relationships as a graph.