Ad
related to: laplace of second order derivative calculator given a point x
Search results
Results from the WOW.Com Content Network
The Laplace operator is a second-order differential operator in the n-dimensional Euclidean space, defined as the divergence of the gradient (). Thus if f {\displaystyle f} is a twice-differentiable real-valued function , then the Laplacian of f {\displaystyle f} is the real-valued function defined by:
In numerical analysis, given a square grid in one or two dimensions, the five-point stencil of a point in the grid is a stencil made up of the point itself together with its four "neighbors". It is used to write finite difference approximations to derivatives at grid points. It is an example for numerical differentiation.
In mathematics and physics, Laplace's equation is a second-order partial differential equation named after Pierre-Simon Laplace, who first studied its properties.This is often written as = or =, where = = is the Laplace operator, [note 1] is the divergence operator (also symbolized "div"), is the gradient operator (also symbolized "grad"), and (,,) is a twice-differentiable real-valued function.
The Hodge Laplacian, also known as the Laplace–de Rham operator, is a differential operator acting on differential forms. (Abstractly, it is a second order operator on each exterior power of the cotangent bundle.) This operator is defined on any manifold equipped with a Riemannian- or pseudo-Riemannian metric.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
Discrete Laplace operator is often used in image processing e.g. in edge detection and motion estimation applications. [4] The discrete Laplacian is defined as the sum of the second derivatives and calculated as sum of differences over the nearest neighbours of the central pixel. Since derivative filters are often sensitive to noise in an image ...
The simplest example of a second-order linear elliptic PDE is the Laplace equation, in which a i,j is zero if i ≠ j and is one otherwise, and where b i = c = f = 0. The Poisson equation is a slightly more general second-order linear elliptic PDE, in which f is not required to vanish.
For any twice-differentiable real-valued function f defined on Euclidean space R n, the Laplace operator (also known as the Laplacian) takes f to the divergence of its gradient vector field, which is the sum of the n pure second derivatives of f with respect to each vector of an orthonormal basis for R n.
Ad
related to: laplace of second order derivative calculator given a point x