Search results
Results from the WOW.Com Content Network
In statistics, multivariate adaptive regression splines (MARS) is a form of regression analysis introduced by Jerome H. Friedman in 1991. [1] It is a non-parametric regression technique and can be seen as an extension of linear models that automatically models nonlinearities and interactions between variables.
In statistical modeling, regression analysis is a set of statistical processes for estimating the relationships between a dependent variable (often called the outcome or response variable, or a label in machine learning parlance) and one or more error-free independent variables (often called regressors, predictors, covariates, explanatory ...
Active learning is a special case of machine learning in which a learning algorithm can interactively query a human user (or some other information source), to label new data points with the desired outputs. The human user must possess knowledge/expertise in the problem domain, including the ability to consult/research authoritative sources ...
The step size is denoted by (sometimes called the learning rate in machine learning) and here ":=" denotes the update of a variable in the algorithm. In many cases, the summand functions have a simple form that enables inexpensive evaluations of the sum-function and the sum gradient.
For example, a covariate may be multivariate and the corresponding a smooth function of several variables, or might be the function mapping the level of a factor to the value of a random effect. Another example is a varying coefficient (geographic regression) term such as z j f j ( x j ) {\displaystyle z_{j}f_{j}(x_{j})} where z j ...
Learning inside a single-layer ADALINE Photo of an ADALINE machine, with hand-adjustable weights implemented by rheostats Schematic of a single ADALINE unit [1]. ADALINE (Adaptive Linear Neuron or later Adaptive Linear Element) is an early single-layer artificial neural network and the name of the physical device that implemented it.
Among the most used adaptive algorithms is the Widrow-Hoff’s least mean squares (LMS), which represents a class of stochastic gradient-descent algorithms used in adaptive filtering and machine learning. In adaptive filtering the LMS is used to mimic a desired filter by finding the filter coefficients that relate to producing the least mean ...
Linear regression is also a type of machine learning algorithm, more specifically a supervised algorithm, that learns from the labelled datasets and maps the data points to the most optimized linear functions that can be used for prediction on new datasets. [3]