Search results
Results from the WOW.Com Content Network
Optical units are dimensionless units of length used in optical microscopy. They are used to express distances in terms of the numerical aperture of the system and the wavelength of the light used for observation. Using these units allows comparison of the properties of different microscopes. [1]
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century.
In both cases the numerical aperture of the objective is 1.49 and the refractive index of the medium 1.52. The wavelength of the emitted light is assumed to be 600 nm and, in case of the confocal microscope, that of the excitation light 500 nm with circular polarization. A section is cut to visualize the internal intensity distribution.
An electromagnetic wave propagating in the +z-direction is conventionally described by the equation: (,) = [()], where E 0 is a vector in the x-y plane, with the units of an electric field (the vector is in general a complex vector, to allow for all possible polarizations and phases);
Each element is the 6th root of 2 smaller than the preceding element in the group (e.g. element 1 is 2^0, element 2 is 2^(-1/6), element 3 is 2(-1/3), etc.). By reading off the group and element number of the first element which cannot be resolved, the limiting resolution may be determined by inspection.
Light field microscopy (LFM) is a scanning-free 3-dimensional (3D) microscopic imaging method based on the theory of light field.This technique allows sub-second (~10 Hz) large volumetric imaging ([~0.1 to 1 mm] 3) with ~1 μm spatial resolution in the condition of weak scattering and semi-transparence, which has never been achieved by other methods.
The pupil function or aperture function describes how a light wave is affected upon transmission through an optical imaging system such as a camera, microscope, or the human eye. More specifically, it is a complex function of the position in the pupil [ 1 ] or aperture (often an iris ) that indicates the relative change in amplitude and phase ...
For instance, for an f/8 lens (= and %) and for green light (= 0.5 μm wavelength) light, the focusing spot diameter will be d = 9.76 μm or 19.5. This is similar to the pixel size for the majority of commercially available 'full frame' (43mm sensor diagonal) cameras and so these will operate in regime 3 for f-numbers around 8 (few lenses are ...