Search results
Results from the WOW.Com Content Network
Modified-release dosage is a mechanism that (in contrast to immediate-release dosage) delivers a drug with a delay after its administration (delayed-release dosage) or for a prolonged period of time (extended-release [ER, XR, XL] dosage) or to a specific target in the body (targeted-release dosage).
Clearance of a substance is sometimes expressed as the inverse of the time constant that describes its removal rate from the body divided by its volume of distribution (or total body water). In steady-state, it is defined as the mass generation rate of a substance (which equals the mass removal rate) divided by its concentration in the blood.
In the field of pharmacokinetics, the area under the curve (AUC) is the definite integral of the concentration of a drug in blood plasma as a function of time (this can be done using liquid chromatography–mass spectrometry [1]).
The absolute bioavailability is the dose-corrected area under curve (AUC) non-intravenous divided by AUC intravenous. The formula for calculating the absolute bioavailability, F, of a drug administered orally (po) is given below (where D is dose administered).
The plateau principle is a mathematical model or scientific law originally developed to explain the time course of drug action (pharmacokinetics). [1] The principle has wide applicability in pharmacology, physiology, nutrition, biochemistry, and system dynamics.
Pulmonary drug delivery is a route of administration in which patients use an inhaler to inhale their medications and drugs are absorbed into the bloodstream via the lung mucous membrane. This technique is most commonly used in the treatment of lung diseases, for example, asthma and chronic obstructive pulmonary disease (COPD) .
In pharmacokinetics, the rate of infusion (or dosing rate) refers not just to the rate at which a drug is administered, but the desired rate at which a drug should be administered to achieve a steady state of a fixed dose which has been demonstrated to be therapeutically effective. Abbreviations include K in, [1] K 0, [2] or R 0.
Dose and dose rate are used to measure different quantities [1] in the same way that distance and speed are used to measure different quantities. When considering stochastic radiation effects, only the total dose is relevant; each incremental unit of dose increases the probability that the stochastic effect happens. [ 4 ]