Search results
Results from the WOW.Com Content Network
The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.
A typical finite-dimensional mixture model is a hierarchical model consisting of the following components: . N random variables that are observed, each distributed according to a mixture of K components, with the components belonging to the same parametric family of distributions (e.g., all normal, all Zipfian, etc.) but with different parameters
Histograms for one-dimensional datapoints belonging to clusters detected by an infinite Gaussian mixture model. During the parameter estimation based on Gibbs sampling , new clusters are created and grow on the data. The legend shows the cluster colours and the number of datapoints assigned to each cluster.
Density of a mixture of three normal distributions (μ = 5, 10, 15, σ = 2) with equal weights.Each component is shown as a weighted density (each integrating to 1/3) Given a finite set of probability density functions p 1 (x), ..., p n (x), or corresponding cumulative distribution functions P 1 (x),..., P n (x) and weights w 1, ..., w n such that w i ≥ 0 and ∑w i = 1, the mixture ...
It can be used, for example, to estimate a mixture of gaussians, or to solve the multiple linear regression problem. [2] EM clustering of Old Faithful eruption data. The random initial model (which, due to the different scales of the axes, appears to be two very flat and wide ellipses) is fit to the observed data.
For example, GPT-3, and its precursor GPT-2, [11] are auto-regressive neural language models that contain billions of parameters, BigGAN [12] and VQ-VAE [13] which are used for image generation that can have hundreds of millions of parameters, and Jukebox is a very large generative model for musical audio that contains billions of parameters.
Gaussian processes can also be used in the context of mixture of experts models, for example. [29] [30] The underlying rationale of such a learning framework consists in the assumption that a given mapping cannot be well captured by a single Gaussian process model. Instead, the observation space is divided into subsets, each of which is ...
In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.