Search results
Results from the WOW.Com Content Network
Phenylacetylene is a prototypical terminal acetylene, undergoing many reactions expected of that functional group. It undergoes semi hydrogenation over Lindlar catalyst to give styrene . In the presence of base and copper(II) salts, it undergoes oxidative coupling to give diphenylbutadiyne . [ 6 ]
Block on a ramp and corresponding free body diagram of the block. In physics and engineering, a free body diagram (FBD; also called a force diagram) [1] is a graphical illustration used to visualize the applied forces, moments, and resulting reactions on a free body in a given condition. It depicts a body or connected bodies with all the ...
Initiation: The reaction is started by a free-radical source which may be a decomposing radical initiator such as AIBN. In the example in Figure 5, the initiator decomposes to form two fragments (I•) which react with a single monomer molecule to yield a propagating (i.e. growing) polymeric radical of length 1, denoted P 1 •.
Figure 6:Reaction Coordinate Diagrams showing reactions with 0, 1 and 2 intermediates: The double-headed arrow shows the first, second and third step in each reaction coordinate diagram. In all three of these reactions the first step is the slow step because the activation energy from the reactants to the transition state is the highest.
The Sandmeyer reaction is an example of a radical-nucleophilic aromatic substitution (S RN Ar). The radical mechanism of the Sandmeyer reaction is supported by the detection of biaryl byproducts. [8]
Friedel–Crafts reactions have been used in the synthesis of several triarylmethane and xanthene dyes. [26] Examples are the synthesis of thymolphthalein (a pH indicator) from two equivalents of thymol and phthalic anhydride: A reaction of phthalic anhydride with resorcinol in the presence of zinc chloride gives the fluorophore fluorescein.
Example cheletropic reactions: Case 1: the single atom is the carbonyl carbon (C=O) that ends up in carbon monoxide (C≡O). Case 2: the single atom is the nitrogen atom in the diazenyl group (N=N), which ends up as dinitrogen (N≡N). The above are known as cheletropic eliminations because a small, stable molecule is given off in the reaction. [1]
These reactions invariably involve metal-acetylide intermediates. This reaction was discovered by chemist John Ulric Nef in 1899 while experimenting with reactions of elemental sodium, phenylacetylene, and acetophenone. [3] [4] For this reason, the reaction is sometimes referred to as Nef synthesis.