enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Semantic similarity - Wikipedia

    en.wikipedia.org/wiki/Semantic_similarity

    Semantic similarity is a metric defined over a set of documents or terms, where the idea of distance between items is based on the likeness of their meaning or semantic content [citation needed] as opposed to lexicographical similarity. These are mathematical tools used to estimate the strength of the semantic relationship between units of ...

  3. Distributional semantics - Wikipedia

    en.wikipedia.org/wiki/Distributional_semantics

    Distributional semantic models have been applied successfully to the following tasks: finding semantic similarity between words and multi-word expressions; word clustering based on semantic similarity; automatic creation of thesauri and bilingual dictionaries; word sense disambiguation; expanding search requests using synonyms and associations;

  4. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    It is used in natural language processing and information retrieval (IR). It disregards word order (and thus most of syntax or grammar) but captures multiplicity. The bag-of-words model is commonly used in methods of document classification where, for example, the (frequency of) occurrence of each word is used as a feature for training a ...

  5. Word-sense disambiguation - Wikipedia

    en.wikipedia.org/wiki/Word-sense_disambiguation

    Finally, the first word is disambiguated by selecting the semantic variant which minimizes the distance from the first to the second word. An alternative to the use of the definitions is to consider general word-sense relatedness and to compute the semantic similarity of each pair of word senses based on a given lexical knowledge base such as ...

  6. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The word with embeddings most similar to the topic vector might be assigned as the topic's title, whereas far away word embeddings may be considered unrelated. As opposed to other topic models such as LDA , top2vec provides canonical ‘distance’ metrics between two topics, or between a topic and another embeddings (word, document, or otherwise).

  7. Word embedding - Wikipedia

    en.wikipedia.org/wiki/Word_embedding

    In natural language processing, a word embedding is a representation of a word. The embedding is used in text analysis.Typically, the representation is a real-valued vector that encodes the meaning of the word in such a way that the words that are closer in the vector space are expected to be similar in meaning. [1]

  8. Semantic processing - Wikipedia

    en.wikipedia.org/wiki/Semantic_Processing

    In psycholinguistics, semantic processing is the stage of language processing that occurs after one hears a word and encodes its meaning: the mind relates the word to other words with similar meanings. Once a word is perceived, it is placed in a context mentally that allows for a deeper processing. Therefore, semantic processing produces memory ...

  9. Explicit semantic analysis - Wikipedia

    en.wikipedia.org/wiki/Explicit_semantic_analysis

    ESA is considered by its authors a measure of semantic relatedness (as opposed to semantic similarity). On datasets used to benchmark relatedness of words, ESA outperforms other algorithms, including WordNet semantic similarity measures and skip-gram Neural Network Language Model ( Word2vec ).