Search results
Results from the WOW.Com Content Network
Excel maintains 15 figures in its numbers, but they are not always accurate; mathematically, the bottom line should be the same as the top line, in 'fp-math' the step '1 + 1/9000' leads to a rounding up as the first bit of the 14 bit tail '10111000110010' of the mantissa falling off the table when adding 1 is a '1', this up-rounding is not undone when subtracting the 1 again, since there is no ...
Excel offers many user interface tweaks over the earliest electronic spreadsheets; however, the essence remains the same as in the original spreadsheet software, VisiCalc: the program displays cells organized in rows and columns, and each cell may contain data or a formula, with relative or absolute references to other cells. Excel 2.0 for ...
In its MS-DOS (character cell) version, widely considered to be responsible for the explosion of popularity of spreadsheets during the 80s and early 90s. [citation needed] Microsoft Office Excel – for MS Windows and Apple Macintosh. The proprietary spreadsheet leader.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An extension of word vectors for creating a dense vector representation of unstructured radiology reports has been proposed by Banerjee et al. [23] One of the biggest challenges with Word2vec is how to handle unknown or out-of-vocabulary (OOV) words and morphologically similar words. If the Word2vec model has not encountered a particular word ...
The result is a keyword density value. When calculating keyword density, ignore html tags and other embedded tags which will not appear in the text of the page once published. When calculating the density of a keyword phrase, the formula would be (/), [1] where Nwp is the number of words in the phrase. So, for example, for a four-hundred word ...
which shows which documents contain which terms and how many times they appear. Note that, unlike representing a document as just a token-count list, the document-term matrix includes all terms in the corpus (i.e. the corpus vocabulary), which is why there are zero-counts for terms in the corpus which do not also occur in a specific document.
For a fixed length n, the Hamming distance is a metric on the set of the words of length n (also known as a Hamming space), as it fulfills the conditions of non-negativity, symmetry, the Hamming distance of two words is 0 if and only if the two words are identical, and it satisfies the triangle inequality as well: [2] Indeed, if we fix three words a, b and c, then whenever there is a ...