enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace transform applied to differential equations - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform_applied...

    In mathematics, the Laplace transform is a powerful integral transform used to switch a function from the time domain to the s-domain. The Laplace transform can be used in some cases to solve linear differential equations with given initial conditions. First consider the following property of the Laplace transform:

  3. Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Laplace_transform

    In mathematics, the Laplace transform, named after Pierre-Simon Laplace (/ l ə ˈ p l ɑː s /), is an integral transform that converts a function of a real variable (usually , in the time domain) to a function of a complex variable (in the complex-valued frequency domain, also known as s-domain, or s-plane).

  4. Inverse Laplace transform - Wikipedia

    en.wikipedia.org/wiki/Inverse_Laplace_transform

    Post's inversion formula for Laplace transforms, named after Emil Post, [3] is a simple-looking but usually impractical formula for evaluating an inverse Laplace transform. The statement of the formula is as follows: Let f ( t ) {\displaystyle f(t)} be a continuous function on the interval [ 0 , ∞ ) {\displaystyle [0,\infty )} of exponential ...

  5. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The Laplace–Beltrami operator, when applied to a function, is the trace (tr) of the function's Hessian: = ⁡ (()) where the trace is taken with respect to the inverse of the metric tensor. The Laplace–Beltrami operator also can be generalized to an operator (also called the Laplace–Beltrami operator) which operates on tensor fields, by a ...

  6. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    Taking the Laplace transform of Fick's second law yields an ordinary second-order differential equation (here in dimensionless form): (,) = (,) whose solution C ( x , s ) contains a one-half power dependence on s .

  7. List of Laplace transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Laplace_transforms

    The unilateral Laplace transform takes as input a function whose time domain is the non-negative reals, which is why all of the time domain functions in the table below are multiples of the Heaviside step function, u(t). The entries of the table that involve a time delay τ are required to be causal (meaning that τ > 0).

  8. Multidimensional transform - Wikipedia

    en.wikipedia.org/wiki/Multidimensional_transform

    The multidimensional Laplace transform is useful for the solution of boundary value problems. Boundary value problems in two or more variables characterized by partial differential equations can be solved by a direct use of the Laplace transform. [3] The Laplace transform for an M-dimensional case is defined [3] as

  9. Integral transform - Wikipedia

    en.wikipedia.org/wiki/Integral_transform

    As an example of an application of integral transforms, consider the Laplace transform. This is a technique that maps differential or integro-differential equations in the "time" domain into polynomial equations in what is termed the "complex frequency" domain. (Complex frequency is similar to actual, physical frequency but rather more general.