enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Best-first search - Wikipedia

    en.wikipedia.org/wiki/Best-first_search

    Best-first search is a class of search algorithms which explores a graph by expanding the most promising node chosen according to a specified rule.. Judea Pearl described best-first search as estimating the promise of node n by a "heuristic evaluation function () which, in general, may depend on the description of n, the description of the goal, the information gathered by the search up to ...

  3. Basic feasible solution - Wikipedia

    en.wikipedia.org/wiki/Basic_feasible_solution

    A BFS can have less than m non-zero variables; in that case, it can have many different bases, all of which contain the indices of its non-zero variables. 3. A feasible solution x {\displaystyle \mathbf {x} } is basic if-and-only-if the columns of the matrix A K {\displaystyle A_{K}} are linearly independent, where K is the set of indices of ...

  4. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    Input: A graph G and a starting vertex root of G. Output: Goal state.The parent links trace the shortest path back to root [9]. 1 procedure BFS(G, root) is 2 let Q be a queue 3 label root as explored 4 Q.enqueue(root) 5 while Q is not empty do 6 v := Q.dequeue() 7 if v is the goal then 8 return v 9 for all edges from v to w in G.adjacentEdges(v) do 10 if w is not labeled as explored then 11 ...

  5. Parallel breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Parallel_breadth-first_search

    An example of CSR representation of a directed graph. Pennant data structure for k=0 to k=3. An example of bag structure with 23 elements. There are some special data structures that parallel BFS can benefit from, such as CSR (Compressed Sparse Row), bag-structure, bitmap and so on.

  6. Constraint satisfaction problem - Wikipedia

    en.wikipedia.org/wiki/Constraint_satisfaction...

    An evaluation of the variables is a function from a subset of variables to a particular set of values in the corresponding subset of domains. An evaluation v {\displaystyle v} satisfies a constraint t j , R j {\displaystyle \langle t_{j},R_{j}\rangle } if the values assigned to the variables t j {\displaystyle t_{j}} satisfy the relation R j ...

  7. Search algorithm - Wikipedia

    en.wikipedia.org/wiki/Search_algorithm

    Specific applications of search algorithms include: Problems in combinatorial optimization, such as: . The vehicle routing problem, a form of shortest path problem; The knapsack problem: Given a set of items, each with a weight and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as ...

  8. Branch and bound - Wikipedia

    en.wikipedia.org/wiki/Branch_and_bound

    Using a heuristic, find a solution x h to the optimization problem. Store its value, B = f(x h). (If no heuristic is available, set B to infinity.) B will denote the best solution found so far, and will be used as an upper bound on candidate solutions. Initialize a queue to hold a partial solution with none of the variables of the problem assigned.

  9. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Breadth-first search can be viewed as a special-case of Dijkstra's algorithm on unweighted graphs, where the priority queue degenerates into a FIFO queue. The fast marching method can be viewed as a continuous version of Dijkstra's algorithm which computes the geodesic distance on a triangle mesh.