Search results
Results from the WOW.Com Content Network
In the long term, the greatest changes in the Solar System will come from changes in the Sun itself as it ages. As the Sun burns through its hydrogen fuel supply, it gets hotter and burns the remaining fuel even faster. As a result, the Sun is growing brighter at a rate of ten percent every 1.1 billion years. [117]
The Sun is the star at the center of the Solar System.It is a massive, nearly perfect sphere of hot plasma, heated to incandescence by nuclear fusion reactions in its core, radiating the energy from its surface mainly as visible light and infrared radiation with 10% at ultraviolet energies.
The Sun is a burning plasma that has reached fusion ignition, meaning the Sun's plasma temperature is maintained solely by energy released from fusion. The Sun has been burning hydrogen for 4.5 billion years and is about halfway through its life cycle.
Thus, the Sun occupies 0.00001% (1 part in 10 7) of the volume of a sphere with a radius the size of Earth's orbit, whereas Earth's volume is roughly 1 millionth (10 −6) that of the Sun. Jupiter, the largest planet, is 5.2 AU from the Sun and has a radius of 71,000 km (0.00047 AU; 44,000 mi), whereas the most distant planet, Neptune, is 30 AU ...
The core contains 34% of the Sun's mass, but only 3% of the Sun's volume, and it generates 99% of the fusion power of the Sun. There are two distinct reactions in which four hydrogen nuclei may eventually result in one helium nucleus: the proton–proton chain reaction – which is responsible for most of the Sun's released energy – and the ...
In such a scenario, the oceans would freeze solid within several million years, leaving only a few pockets of liquid water about 14 km (9 mi) underground. There is a remote chance that Earth will instead be captured by a passing binary star system, allowing the planet's biosphere to remain intact. The odds of this happening are about 1 in 3 ...
When the mass of hydrogen becomes sufficiently large, runaway fusion causes a nova. In a few binary systems where the hydrogen fuses on the surface, the mass of helium built up can burn in an unstable helium flash. In certain binary systems the companion star may have lost most of its hydrogen and donate helium-rich material to the compact star.
The minimum temperature required for stellar hydrogen fusion exceeds 10 7 K (10 MK), while the density at the core of the Sun is over 100 g/cm 3. The core is surrounded by the stellar envelope, which transports energy from the core to the stellar atmosphere where it is radiated away into space.