enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Charge-transfer complex - Wikipedia

    en.wikipedia.org/wiki/Charge-transfer_complex

    In chemistry, charge-transfer (CT) complex, or electron donor-acceptor complex, describes a type of supramolecular assembly of two or more molecules or ions. The assembly consists of two molecules that self-attract through electrostatic forces, i.e., one has at least partial negative charge and the partner has partial positive charge, referred ...

  3. Marcus theory - Wikipedia

    en.wikipedia.org/wiki/Marcus_theory

    The reorganization energy is defined as the energy required to "reorganize" the system structure from initial to final coordinates, without making the charge transfer. 2. It provides a formula for the pre-exponential factor in the Arrhenius equation, based on the electronic coupling between the initial and final state of the electron transfer ...

  4. Benesi–Hildebrand method - Wikipedia

    en.wikipedia.org/wiki/Benesi–Hildebrand_method

    This method was first developed by Benesi and Hildebrand in 1949, [2] as a means to explain a phenomenon where iodine changes color in various aromatic solvents. This was attributed to the formation of an iodine-solvent complex through acid-base interactions, leading to the observed shifts in the absorption spectrum.

  5. Electron acceptor - Wikipedia

    en.wikipedia.org/wiki/Electron_acceptor

    Paraquat, the dication on the left, functions as an electron acceptor, disrupting respiration in plants. In biology, a terminal electron acceptor often refers to either the last compound to receive an electron in an electron transport chain, such as oxygen during cellular respiration, or the last cofactor to receive an electron within the electron transfer domain of a reaction center during ...

  6. Charge transport mechanisms - Wikipedia

    en.wikipedia.org/wiki/Charge_transport_mechanisms

    This equation is characteristic of incoherent hopping transport, which takes place at low concentrations, where the limiting factor is the exponential decay of hopping probability with inter-site distance. [4] Sometimes this relation is expressed for conductivity, rather than mobility:

  7. Charge transfer coefficient - Wikipedia

    en.wikipedia.org/wiki/Charge_transfer_coefficient

    They appear in the Butler–Volmer equation and related expressions. The symmetry factor and the charge transfer coefficient are dimensionless. [1] According to an IUPAC definition, [2] for a reaction with a single rate-determining step, the charge transfer coefficient for a cathodic reaction (the cathodic transfer coefficient, α c) is defined as:

  8. Butler–Volmer equation - Wikipedia

    en.wikipedia.org/wiki/Butler–Volmer_equation

    This is known as the charge transfer rate. The second is the rate at which reactants are provided, and products removed, from the electrode region by various processes including diffusion, migration, and convection. The latter is known as the mass-transfer rate [Note 1]. These two rates determine the concentrations of the reactants and products ...

  9. Organic electronics - Wikipedia

    en.wikipedia.org/wiki/Organic_electronics

    In the 1950s, organic molecules were shown to exhibit electrical conductivity. Specifically, the organic compound pyrene was shown to form semiconducting charge-transfer complex salts with halogens. [14] In 1972, researchers found metallic conductivity (conductivity comparable to a metal) in the charge-transfer complex TTF-TCNQ.