enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorem

    The Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, the procedure of iterating a function yields a fixed point. [2]By contrast, the Brouwer fixed-point theorem (1911) is a non-constructive result: it says that any continuous function from the closed unit ball in n-dimensional Euclidean space to itself must have a fixed point, [3] but it doesn ...

  3. Brouwer fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Brouwer_fixed-point_theorem

    The Kakutani fixed point theorem generalizes the Brouwer fixed-point theorem in a different direction: it stays in R n, but considers upper hemi-continuous set-valued functions (functions that assign to each point of the set a subset of the set). It also requires compactness and convexity of the set.

  4. Banach fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Banach_fixed-point_theorem

    In mathematics, the Banach fixed-point theorem (also known as the contraction mapping theorem or contractive mapping theorem or Banach–Caccioppoli theorem) is an important tool in the theory of metric spaces; it guarantees the existence and uniqueness of fixed points of certain self-maps of metric spaces and provides a constructive method to find those fixed points.

  5. Fixed-point theorems in infinite-dimensional spaces - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_theorems_in...

    Schauder fixed-point theorem: Let C be a nonempty closed convex subset of a Banach space V. If f : C → C is continuous with a compact image, then f has a fixed point. Tikhonov (Tychonoff) fixed-point theorem: Let V be a locally convex topological vector space. For any nonempty compact convex set X in V, any continuous function f : X → X has ...

  6. Lawvere's fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Lawvere's_fixed-point_theorem

    In mathematics, Lawvere's fixed-point theorem is an important result in category theory. [1] It is a broad abstract generalization of many diagonal arguments in mathematics and logic, such as Cantor's diagonal argument, Cantor's theorem, Russell's paradox, Gödel's first incompleteness theorem, Turing's solution to the Entscheidungsproblem, and Tarski's undefinability theorem.

  7. Diagonal lemma - Wikipedia

    en.wikipedia.org/wiki/Diagonal_lemma

    The terms "diagonal lemma" or "fixed point" do not appear in Kurt Gödel's 1931 article or in Alfred Tarski's 1936 article. Rudolf Carnap (1934) was the first to prove the general self-referential lemma , [ 6 ] which says that for any formula F in a theory T satisfying certain conditions, there exists a formula ψ such that ψ ↔ F (°#( ψ ...

  8. Fixed point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Fixed_point_(mathematics)

    A fixed-point theorem is a result saying that at least one fixed point exists, under some general condition. [1] For example, the Banach fixed-point theorem (1922) gives a general criterion guaranteeing that, if it is satisfied, fixed-point iteration will always converge to a fixed point.

  9. Kakutani fixed-point theorem - Wikipedia

    en.wikipedia.org/wiki/Kakutani_fixed-point_theorem

    The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.