Search results
Results from the WOW.Com Content Network
The optical band gap (see below) determines what portion of the solar spectrum a photovoltaic cell absorbs. [18] Strictly, a semiconductor will not absorb photons of energy less than the band gap; whereas most of the photons with energies exceeding the band gap will generate heat. Neither of them contribute to the efficiency of a solar cell.
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
Silicon nitride is a chemical compound of the elements silicon and nitrogen. Si 3 N 4 (Trisilicon tetranitride) is the most thermodynamically stable and commercially important of the silicon nitrides, [6] and the term ″Silicon nitride″ commonly refers to this specific composition.
The nitride anion, N 3-ion, is very elusive but compounds of nitride are numerous, although rarely naturally occurring. Some nitrides have a found applications, [1] such as wear-resistant coatings (e.g., titanium nitride, TiN), hard ceramic materials (e.g., silicon nitride, Si 3 N 4), and semiconductors (e.g., gallium nitride, GaN).
Wide-bandgap semiconductors (also known as WBG semiconductors or WBGSs) are semiconductor materials which have a larger band gap than conventional semiconductors. Conventional semiconductors like silicon and selenium have a bandgap in the range of 0.7 – 1.5 electronvolt (eV), whereas wide-bandgap materials have bandgaps in the range above 2 eV.
A compound semiconductor is a semiconductor compound composed of chemical elements of at least two different species. These semiconductors form for example in periodic table groups 13–15 (old groups III–V), for example of elements from the Boron group (old group III, boron, aluminium, gallium, indium) and from group 15 (old group V, nitrogen, phosphorus, arsenic, antimony, bismuth).
In solid mechanics, the Johnson–Holmquist damage model is used to model the mechanical behavior of damaged brittle materials, such as ceramics, rocks, and concrete, over a range of strain rates. Such materials usually have high compressive strength but low tensile strength and tend to exhibit progressive damage under load due to the growth of ...
Removal of dangling bond surface states on the silicon (001) surface from the band gap can be achieved by treatment of the surface with a monolayer of selenium (alternatively, sulfur was proposed). Selenium can attach to the silicon (001) surface and can bind to surface dangling bonds, bridging between silicon atoms.