enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stellar evolution - Wikipedia

    en.wikipedia.org/wiki/Stellar_evolution

    Representative lifetimes of stars as a function of their masses The change in size with time of a Sun-like star Artist's depiction of the life cycle of a Sun-like star, starting as a main-sequence star at lower left then expanding through the subgiant and giant phases, until its outer envelope is expelled to form a planetary nebula at upper right Chart of stellar evolution

  3. Silicon-burning process - Wikipedia

    en.wikipedia.org/wiki/Silicon-burning_process

    In astrophysics, silicon burning is a very brief [1] sequence of nuclear fusion reactions that occur in massive stars with a minimum of about 8–11 solar masses. Silicon burning is the final stage of fusion for massive stars that have run out of the fuels that power them for their long lives in the main sequence on the Hertzsprung–Russell diagram.

  4. Stellar collision - Wikipedia

    en.wikipedia.org/wiki/Stellar_collision

    About half of all the stars in the sky are part of binary systems, with two stars orbiting each other. Some binary stars orbit each other so closely that they share the same atmosphere, giving the system a peanut shape. While most such contact binary systems are stable, some do become unstable and either eject one partner or eventually merge.

  5. Oxygen-burning process - Wikipedia

    en.wikipedia.org/wiki/Oxygen-burning_process

    The oxygen-burning process is a set of nuclear fusion reactions that take place in massive stars that have used up the lighter elements in their cores. Oxygen-burning is preceded by the neon-burning process and succeeded by the silicon-burning process. As the neon-burning process ends, the core of the star contracts and heats until it reaches ...

  6. Carbon-burning process - Wikipedia

    en.wikipedia.org/wiki/Carbon-burning_process

    The resulting carbon burning provides energy from the core to restore the star's mechanical equilibrium. However, the balance is only short-lived; in a star of 25 solar masses, the process will use up most of the carbon in the core in only 600 years. The duration of this process varies significantly depending on the mass of the star. [12]

  7. Star - Wikipedia

    en.wikipedia.org/wiki/Star

    Giant stars have a much lower surface gravity than do main sequence stars, while the opposite is the case for degenerate, compact stars such as white dwarfs. The surface gravity can influence the appearance of a star's spectrum, with higher gravity causing a broadening of the absorption lines .

  8. AOL Mail

    mail.aol.com/?icid=aol.com-nav

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Olbers's paradox - Wikipedia

    en.wikipedia.org/wiki/Olbers's_Paradox

    The first one to address the problem of an infinite number of stars and the resulting heat in the Cosmos was Cosmas Indicopleustes, a 6th-century Greek monk from Alexandria, who states in his Topographia Christiana: "The crystal-made sky sustains the heat of the Sun, the moon, and the infinite number of stars; otherwise, it would have been full of fire, and it could melt or set on fire."