enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Standard error - Wikipedia

    en.wikipedia.org/wiki/Standard_error

    For a value that is sampled with an unbiased normally distributed error, the above depicts the proportion of samples that would fall between 0, 1, 2, and 3 standard deviations above and below the actual value.

  3. Measurement uncertainty - Wikipedia

    en.wikipedia.org/wiki/Measurement_uncertainty

    then has expectation equal to the average measured value and standard deviation equal to the standard deviation of the average. When the uncertainty is evaluated from a small number of measured values (regarded as instances of a quantity characterized by a Gaussian distribution), the corresponding distribution can be taken as a t -distribution ...

  4. 68–95–99.7 rule - Wikipedia

    en.wikipedia.org/wiki/68–95–99.7_rule

    In the empirical sciences, the so-called three-sigma rule of thumb (or 3 σ rule) expresses a conventional heuristic that nearly all values are taken to lie within three standard deviations of the mean, and thus it is empirically useful to treat 99.7% probability as near certainty.

  5. Observational error - Wikipedia

    en.wikipedia.org/wiki/Observational_error

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  6. Standard deviation - Wikipedia

    en.wikipedia.org/wiki/Standard_deviation

    This defines a point P = (x 1, x 2, x 3) in R 3. Consider the line L = {(r, r, r) : r ∈ R}. This is the "main diagonal" going through the origin. If our three given values were all equal, then the standard deviation would be zero and P would lie on L. So it is not unreasonable to assume that the standard deviation is related to the distance ...

  7. Unbiased estimation of standard deviation - Wikipedia

    en.wikipedia.org/wiki/Unbiased_estimation_of...

    One way of seeing that this is a biased estimator of the standard deviation of the population is to start from the result that s 2 is an unbiased estimator for the variance σ 2 of the underlying population if that variance exists and the sample values are drawn independently with replacement. The square root is a nonlinear function, and only ...

  8. Reduced chi-squared statistic - Wikipedia

    en.wikipedia.org/wiki/Reduced_chi-squared_statistic

    The degree of freedom, =, equals the number of observations n minus the number of fitted parameters m. In weighted least squares , the definition is often written in matrix notation as χ ν 2 = r T W r ν , {\displaystyle \chi _{\nu }^{2}={\frac {r^{\mathrm {T} }Wr}{\nu }},} where r is the vector of residuals, and W is the weight matrix, the ...

  9. Lack-of-fit sum of squares - Wikipedia

    en.wikipedia.org/wiki/Lack-of-fit_sum_of_squares

    The critical value corresponds to the cumulative distribution function of the F distribution with x equal to the desired confidence level, and degrees of freedom d 1 = (n − p) and d 2 = (N − n). The assumptions of normal distribution of errors and independence can be shown to entail that this lack-of-fit test is the likelihood-ratio test of ...