Ads
related to: modulo congruence formula geometry worksheetkutasoftware.com has been visited by 10K+ users in the past month
math.hpeasystart.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
The congruence relation is an equivalence relation. The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m, and may be denoted as (a mod m), or as a or [a] when the modulus m is known from the context.
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
The principal congruence subgroup of level 2, Γ(2), is also called the modular group Λ. Since PSL(2, Z /2 Z ) is isomorphic to S 3 , Λ is a subgroup of index 6. The group Λ consists of all modular transformations for which a and d are odd and b and c are even.
n. In modular arithmetic, the integers coprime (relatively prime) to n from the set of n non-negative integers form a group under multiplication modulo n, called the multiplicative group of integers modulo n. Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n.
Hensel's original lemma concerns the relation between polynomial factorization over the integers and over the integers modulo a prime number p and its powers. It can be straightforwardly extended to the case where the integers are replaced by any commutative ring, and p is replaced by any maximal ideal (indeed, the maximal ideals of have the form , where p is a prime number).
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n , a modulo n (often abbreviated as a mod n ) is the remainder of the Euclidean division of a by n , where a is the dividend and n is the divisor .
Ads
related to: modulo congruence formula geometry worksheetkutasoftware.com has been visited by 10K+ users in the past month
math.hpeasystart.com has been visited by 10K+ users in the past month