Search results
Results from the WOW.Com Content Network
Adding 4 hours to 9 o'clock gives 1 o'clock, since 13 is congruent to 1 modulo 12. In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones ...
For example, the expression "5 mod 2" evaluates to 1, because 5 divided by 2 has a quotient of 2 and a remainder of 1, while "9 mod 3" would evaluate to 0, because 9 divided by 3 has a quotient of 3 and a remainder of 0. Although typically performed with a and n both being integers, many computing systems now allow other types of numeric operands.
Sunzi's original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition ...
Quadratic Reciprocity (Legendre's statement). If p or q are congruent to 1 modulo 4, then: is solvable if and only if is solvable. If p and q are congruent to 3 modulo 4, then: is solvable if and only if is not solvable. The last is immediately equivalent to the modern form stated in the introduction above.
Modular equation. In mathematics, a modular equation is an algebraic equation satisfied by moduli, [1] in the sense of moduli problems. That is, given a number of functions on a moduli space, a modular equation is an equation holding between them, or in other words an identity for moduli. The most frequent use of the term modular equation is in ...
Modular multiplicative inverse. In mathematics, particularly in the area of arithmetic, a modular multiplicative inverse of an integer a is an integer x such that the product ax is congruent to 1 with respect to the modulus m. [1] In the standard notation of modular arithmetic this congruence is written as.
x 5 ≡ x (mod 5) y 5 ≡ y (mod 5) z 5 ≡ z (mod 5) and therefore x + y + z ≡ 0 (mod 5) This equation forces two of the three numbers x, y, and z to be equivalent modulo 5, which can be seen as follows: Since they are indivisible by 5, x, y and z cannot equal 0 modulo 5, and must equal one of four possibilities: 1, −1, 2, or −2. If they ...
Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.