Search results
Results from the WOW.Com Content Network
Developing Intelligence Eigenfaces and the Fusiform Face Area; A Tutorial on Face Recognition Using Eigenfaces and Distance Classifiers; Matlab example code for eigenfaces; OpenCV + C++Builder6 implementation of PCA; Java applet demonstration of eigenfaces Archived 2011-11-01 at the Wayback Machine; Introduction to eigenfaces; Face Recognition ...
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.
FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]
The model was first introduced by Edwards, Cootes and Taylor in the context of face analysis at the 3rd International Conference on Face and Gesture Recognition, 1998. [1] Cootes, Edwards and Taylor further described the approach as a general method in computer vision at the European Conference on Computer Vision in the same year.
In object-class detection, the task is to find the locations and sizes of all objects in an image that belong to a given class. Examples include upper torsos, pedestrians, and cars. Face detection simply answers two question, 1. are there any human faces in the collected images or video? 2. where is the face located?
Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1] Well-researched domains of object detection include face detection and pedestrian detection.
Face hallucination algorithms that are applied to images prior to those images being submitted to the facial recognition system use example-based machine learning with pixel substitution or nearest neighbour distribution indexes that may also incorporate demographic and age related facial characteristics. Use of face hallucination techniques ...
Learning-based fitting methods use machine learning techniques to predict the facial coefficients. These can use linear regression, nonlinear regression and other fitting methods. [6] In general, the analytic fitting methods are more accurate and do not need training, while the learning-based fitting methods are faster, but need to be trained. [7]