Search results
Results from the WOW.Com Content Network
A k –elements combination from some set is another name for a k –elements subset, so the number of combinations, denoted as C(n, k) (also called binomial coefficient) is a number of subsets with k elements in a set with n elements; in other words it's the number of sets with k elements which are elements of the power set of a set with n ...
By definition, the power set contains all sets of natural numbers, and so it contains this set as an element. If the mapping is bijective, B {\displaystyle B} must be paired off with some natural number, say b {\displaystyle b} .
The power set axiom does not specify what subsets of a set exist, only that there is a set containing all those that do. [2] Not all conceivable subsets are guaranteed to exist. In particular, the power set of an infinite set would contain only "constructible sets" if the universe is the constructible universe but in other models of ZF set ...
Similarly, every finite Boolean algebra can be represented as a power set – the power set of its set of atoms; each element of the Boolean algebra corresponds to the set of atoms below it (the join of which is the element). This power set representation can be constructed more generally for any complete atomic Boolean algebra.
The set of all subsets of a given set is called the power set of and is denoted by ℘ (). The power set ℘ of a given set is a family of sets over .. A subset of having elements is called a -subset of .
The empty set is also occasionally called the null set, [11] though this name is ambiguous and can lead to several interpretations. The power set of a set A, denoted (), is the set whose members are all of the possible subsets of A. For example, the power set of {1, 2} is { {}, {1}, {2}, {1, 2} }.
The elements of a set can be anything. For example the elements of the set = ... The range is the set of subsets of U called the power set of U and denoted P(U).
Assuming the existence of an infinite set N consisting of all natural numbers and assuming the existence of the power set of any given set allows the definition of a sequence N, P(N), P(P(N)), P(P(P(N))), … of infinite sets where each set is the power set of the set preceding it. By Cantor's theorem, the cardinality of each set in this ...