Search results
Results from the WOW.Com Content Network
If the Cartesian product rows × columns is taken, the cells of the table contain ordered pairs of the form (row value, column value). [4] One can similarly define the Cartesian product of n sets, also known as an n-fold Cartesian product, which can be represented by an n-dimensional array, where each element is an n-tuple.
The Cartesian product of n edges is a hypercube: =. Thus, the Cartesian product of two hypercube graphs is another hypercube: Q i Q j = Q i+j. The Cartesian product of two median graphs is another median graph. The graph of vertices and edges of an n-prism is the Cartesian product graph K 2 C n.
In mathematics, the n-dimensional complex coordinate space (or complex n-space) is the set of all ordered n-tuples of complex numbers, also known as complex vectors. The space is denoted C n {\displaystyle \mathbb {C} ^{n}} , and is the n -fold Cartesian product of the complex line C {\displaystyle \mathbb {C} } with itself.
The complex coordinate space is the Cartesian product of n copies of , and when is a domain of holomorphy, can be regarded as a Stein manifold, and more generalized Stein space. C n {\displaystyle \mathbb {C} ^{n}} is also considered to be a complex projective variety , a Kähler manifold , [ 9 ] etc.
In set theory, a Cartesian product is a mathematical operation which returns a set (or product set) from multiple sets. That is, for sets A and B, the Cartesian product A × B is the set of all ordered pairs (a, b) —where a ∈ A and b ∈ B. [5] The class of all things (of a given type) that have Cartesian products is called a Cartesian ...
Ternary relations may also be referred to as 3-adic, 3-ary, 3-dimensional, or 3-place. Just as a binary relation is formally defined as a set of pairs , i.e. a subset of the Cartesian product A × B of some sets A and B , so a ternary relation is a set of triples, forming a subset of the Cartesian product A × B × C of three sets A , B and C .
In mathematics, a finitary relation over a sequence of sets X 1, ..., X n is a subset of the Cartesian product X 1 × ... × X n; that is, it is a set of n-tuples (x 1, ..., x n), each being a sequence of elements x i in the corresponding X i. [1] [2] [3] Typically, the relation describes a possible connection between the elements of an n-tuple.
In mathematics, a cubical complex (also called cubical set and Cartesian complex [1]) is a set composed of points, line segments, squares, cubes, and their n-dimensional counterparts. They are used analogously to simplicial complexes and CW complexes in the computation of the homology of topological spaces .