Search results
Results from the WOW.Com Content Network
Generator separately excited by battery Self exciting generators Series on left, shunt on right. A shunt generator is a type of electric generator in which field winding and armature winding are connected in parallel, and in which the armature supplies both the load current and the field current for the excitation (generator is therefore self excited).
Long distance HVDC lines carrying hydroelectricity from Canada's Nelson River to this converter station where it is converted to AC for use in southern Manitoba's grid. A high-voltage direct current (HVDC) electric power transmission system uses direct current (DC) for electric power transmission, in contrast with the more common alternating current (AC) transmission systems. [1]
The smaller generator can be either a magneto with permanent field magnets or another self-excited generator. A field coil may be connected in shunt, in series, or in compound with the armature of a DC machine (motor or generator). For a machine using field coils, as is the case in most large generators, the field must be established by a ...
The critical field resistance is defined as the maximum field circuit resistance (for a given speed) with which the shunt generator would just excite. The shunt generator will build up voltage only if field circuit resistance is less than critical field resistance. It is a tangent to the open-circuit characteristics of the generator (at a given ...
A magneto-resistor (MR) is a two terminal device which changes its resistance parabolically with applied magnetic field. This variation of the resistance of MR due to the magnetic field is known as the Magnetoresistive Effect. It is possible to build structures in which the electrical resistance varies as a function of applied magnetic field ...
A magnetically-controlled shunt reactor (MCSR, CSR) represents electrotechnical equipment purposed for compensation of reactive power and stabilization of voltage level in high voltage (HV) electric networks rated for voltage classes 36 – 750 kV. MCSR is shunt-type static device with smooth regulation by means of inductive reactance.
At the low field, the permeable iron in the magnetic circuit of the generator is not saturated, therefore the reluctance almost entirely depends on the fixed contribution of the air gap, so the part of the curve that starts at the point of origin is a linear "air-gap line" (output voltage is proportional to the excitation current).
In fact, with a line-commutated converter, the firing angle represents the only fast way of controlling the converter. Firing angle control is used to regulate the DC voltages of both ends of the HVDC system continuously in order to obtain the desired level of power transfer. Valve voltage and current for inverter operation with γ=20° and μ=20°