Search results
Results from the WOW.Com Content Network
Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue) The Kirchhoff–Love theory of plates is a two-dimensional mathematical model that is used to determine the stresses and deformations in thin plates subjected to forces and moments.
Darcy's law was originally established as an empirical equation, but is later shown to be derivable as an approximation of Navier-Stokes equation combined with an empirical composite friction force term. This explains the duality in Darcy's law as a governing equation and a defining equation for absolute permeability.
For two-dimensional, plane strain problems the strain-displacement relations are = ; = [+] ; = Repeated differentiation of these relations, in order to remove the displacements and , gives us the two-dimensional compatibility condition for strains
The practical application of FEM is known as finite element analysis (FEA). FEA, as applied in engineering, is a computational tool for performing engineering analysis. It includes the use of mesh generation techniques for dividing a complex problem into smaller elements, as well as the use of software coded with a FEM algorithm.
Expressed in terms of components with respect to a rectangular Cartesian coordinate system, the governing equations of linear elasticity are: [1]. Equation of motion: , + = where the (), subscript is a shorthand for () / and indicates /, = is the Cauchy stress tensor, is the body force density, is the mass density, and is the displacement.
Deformation of a thin plate highlighting the displacement, the mid-surface (red) and the normal to the mid-surface (blue) The Kirchhoff–Love theory is an extension of Euler–Bernoulli beam theory to thin plates.
Besides deflection, the beam equation describes forces and moments and can thus be used to describe stresses. For this reason, the Euler–Bernoulli beam equation is widely used in engineering, especially civil and mechanical, to determine the strength (as well as deflection) of beams under bending.
Sandwich theory [1] [2] describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first-order beam theory.