Search results
Results from the WOW.Com Content Network
The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]
Less simply, a random permutation is a permutation generated uniformly randomly from the permutations of a given set and a uniform spanning tree of a graph is a spanning tree selected with uniform probabilities from the full set of spanning trees of the graph. The discrete uniform distribution itself is non-parametric.
To define probability distributions for the specific case of random variables (so the sample space can be seen as a numeric set), it is common to distinguish between discrete and absolutely continuous random variables. In the discrete case, it is sufficient to specify a probability mass function assigning a probability to each possible outcome ...
Another random variable may be the person's number of children; this is a discrete random variable with non-negative integer values. It allows the computation of probabilities for individual integer values – the probability mass function (PMF) – or for sets of values, including infinite sets.
In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.
If X is a discrete random variable taking values x in the non-negative integers {0,1, ...}, then the probability generating function of X is defined as [1] = = = (),where is the probability mass function of .
This measure coincides with the pmf for discrete variables and PDF for continuous variables, making the measure-theoretic approach free of fallacies. The probability of a set E {\displaystyle E\,} in the σ-algebra F {\displaystyle {\mathcal {F}}\,} is defined as
"Density function" itself is also used for the probability mass function, leading to further confusion. [4] In general though, the PMF is used in the context of discrete random variables (random variables that take values on a countable set), while the PDF is used in the context of continuous random variables.