Search results
Results from the WOW.Com Content Network
Potassium permanganate (KMnO 4) is a dark violet colored powder. Its reaction with glycerol (commonly known as glycerin or glycerine) (C 3 H 5 (OH) 3) is highly exothermic, resulting rapidly in a flame, along with the formation of carbon dioxide and water vapour: 14 KMnO 4 (s) + 4 C 3 H 5 (OH) 3 (l) → 7 K 2 CO 3 (s) + 7 Mn 2 O 3 (s) + 5 CO 2 ...
4, the conjugate base of permanganic acid. Because the manganese atom has a +7 oxidation state, the permanganate(VII) ion is a strong oxidising agent. The ion is a transition metal ion with a tetrahedral structure. [2] Permanganate solutions are purple in colour and are stable in neutral or slightly alkaline media. The exact chemical reaction ...
For example, addition of potassium permanganate to an aqueous solution of sugar and sodium hydroxide produces the chemical chameleon reaction, which involves dramatic color changes associated with the various oxidation states of manganese. A related vigorous reaction is exploited as a fire starter in survival kits.
The chemical chameleon reaction shows the process in reverse, by reducing violet potassium permanganate first to green potassium manganate and eventually to brown manganese dioxide: [1] [2] [5] KMnO 4 (violet) → K 2 MnO 4 (green) → MnO 2 (brown/yellow suspension) Blue potassium hypomanganate may also form as an intermediate. [6]
Potassium permanganate will decompose into potassium manganate, manganese dioxide and oxygen gas: 2 KMnO 4 → K 2 MnO 4 + MnO 2 + O 2 This reaction is a laboratory method to prepare oxygen, but produces samples of potassium manganate contaminated with MnO 2 .
Potassium permanganate, KMnO 4, is a widely used, versatile and powerful oxidising agent. Permanganic acid solutions are unstable, and gradually decompose into manganese dioxide, oxygen, and water, with initially formed manganese dioxide catalyzing further decomposition. [6] Decomposition is accelerated by heat, light, and acids.
Stages in the oxidation of primary alcohols to carboxylic acids via aldehydes and aldehyde hydrates. Almost all industrial scale oxidations use oxygen or air as the oxidant. [2] Through a variety of mechanisms, the removal of a hydride equivalent converts a primary or secondary alcohol to an aldehyde or ketone, respectively.
The international pictogram for oxidizing chemicals. Dangerous goods label for oxidizing agents. An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or "accepts"/"receives" an electron from a reducing agent (called the reductant, reducer, or electron donor).