Search results
Results from the WOW.Com Content Network
The stability of numerical schemes can be investigated by performing von Neumann stability analysis. For time-dependent problems, stability guarantees that the numerical method produces a bounded solution whenever the solution of the exact differential equation is bounded.
Stability is sometimes achieved by including numerical diffusion. Numerical diffusion is a mathematical term which ensures that roundoff and other errors in the calculation get spread out and do not add up to cause the calculation to "blow up". Von Neumann stability analysis is a commonly used procedure for the stability analysis of finite ...
Numerical stability is the central criterion for judging the usefulness of implementing an algorithm on a computer with roundoff. For the Lanczos algorithm, it can be proved that with exact arithmetic , the set of vectors v 1 , v 2 , ⋯ , v m + 1 {\displaystyle v_{1},v_{2},\cdots ,v_{m+1}} constructs an orthonormal basis, and the eigenvalues ...
Download QR code; Print/export ... choosing the vector r̂ 0 randomly improves numerical stability. [1] ... Electronic Transactions on Numerical Analysis. 1.
In computational fluid dynamics, the MacCormack method (/məˈkɔːrmæk ˈmɛθəd/) is a widely used discretization scheme for the numerical solution of hyperbolic partial differential equations. This second-order finite difference method was introduced by Robert W. MacCormack in 1969. [1]
This algorithm can easily be adapted to compute the variance of a finite population: simply divide by n instead of n − 1 on the last line.. Because SumSq and (Sum×Sum)/n can be very similar numbers, cancellation can lead to the precision of the result to be much less than the inherent precision of the floating-point arithmetic used to perform the computation.
In numerical analysis, the minimum degree algorithm is an algorithm used to permute the rows and columns of a symmetric sparse matrix before applying the Cholesky decomposition, to reduce the number of non-zeros in the Cholesky factor. This results in reduced storage requirements and means that the Cholesky factor can be applied with fewer ...
Verlet integration (French pronunciation:) is a numerical method used to integrate Newton's equations of motion. [1] It is frequently used to calculate trajectories of particles in molecular dynamics simulations and computer graphics .