enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Airfoil - Wikipedia

    en.wikipedia.org/wiki/Airfoil

    Modern aircraft wings may have different airfoil sections along the wing span, each one optimized for the conditions in each section of the wing. Movable high-lift devices, flaps and sometimes slats, are fitted to airfoils on almost every aircraft. A trailing edge flap acts similarly to an aileron; however, it, as opposed to an aileron, can be ...

  3. Kline–Fogleman airfoil - Wikipedia

    en.wikipedia.org/wiki/Kline–Fogleman_airfoil

    The KF airfoil was designed by Richard Kline and Floyd Fogleman. Aircraft wing showing the KFm4 Step. In the early 1960s, Richard Kline wanted to make a paper airplane that could handle strong winds, climb high, level off by itself and then enter a long downwards glide. After many experiments he was able to achieve this goal.

  4. Clark Y airfoil - Wikipedia

    en.wikipedia.org/wiki/Clark_Y_airfoil

    The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.

  5. Chord (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Chord_(aeronautics)

    Many wings are not rectangular, so they have different chords at different positions. Usually, the chord length is greatest where the wing joins the aircraft's fuselage (called the root chord) and decreases along the wing toward the wing's tip (the tip chord). Most jet aircraft use a tapered swept wing design.

  6. Aerodynamic center - Wikipedia

    en.wikipedia.org/wiki/Aerodynamic_center

    The distribution of forces on a wing in flight are both complex and varying. This image shows the forces for two typical airfoils, a symmetrical design on the left, and an asymmetrical design more typical of low-speed designs on the right. This diagram shows only the lift components; the similar drag considerations are not illustrated.

  7. NACA airfoil - Wikipedia

    en.wikipedia.org/wiki/NACA_airfoil

    For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.

  8. Wing configuration - Wikipedia

    en.wikipedia.org/wiki/Wing_configuration

    A tandem wing design has two wings, one behind the other: see Tailplanes and foreplanes below. Some early types had tandem stacks of multiple planes, such as the nine-wing Caproni Ca.60 flying boat with three triplane stacks in tandem. A cruciform wing is a set of four individual wings arranged in the shape of a cross. The cross may take either ...

  9. Washout (aeronautics) - Wikipedia

    en.wikipedia.org/wiki/Washout_(aeronautics)

    Washout is a characteristic of aircraft wing design which deliberately reduces the lift distribution across the span of an aircraft’s wing. The wing is designed so that the angle of incidence is greater at the wing roots and decreases across the span, becoming lowest at the wing tip.