Search results
Results from the WOW.Com Content Network
The Symphony SA-160 was designed with two unusual vortex generators on its wing to ensure aileron effectiveness through the stall. A vortex generator (VG) is an aerodynamic device, consisting of a small vane usually attached to a lifting surface (or airfoil, such as an aircraft wing) [1] or a rotor blade of a wind turbine. [2]
The KF airfoil was designed by Richard Kline and Floyd Fogleman. Aircraft wing showing the KFm4 Step. In the early 1960s, Richard Kline wanted to make a paper airplane that could handle strong winds, climb high, level off by itself and then enter a long downwards glide. After many experiments he was able to achieve this goal.
For example, the NACA 2412 airfoil has a maximum camber of 2% located 40% (0.4 chords) from the leading edge with a maximum thickness of 12% of the chord. The NACA 0015 airfoil is symmetrical, the 00 indicating that it has no camber. The 15 indicates that the airfoil has a 15% thickness to chord length ratio: it is 15% as thick as it is long.
Airfoils are highly-efficient lifting shapes, able to generate more lift than similarly sized flat plates of the same area, and able to generate lift with significantly less drag. Airfoils are used in the design of aircraft, propellers, rotor blades, wind turbines and other applications of aeronautical engineering.
The SA-160 has an aluminum wing design, utilizing a NASA GAW-2 Whitcomb airfoil. To simplify construction the wing has no washout and instead has two composite vortex generators of a unique design, outboard on each wing, to ensure that the inboard portion of the wing stalls first, thus retaining aileron control through the stall. [2] The wing ...
Pages in category "Aircraft wing design" ... Circulation control wing; Clark Y airfoil; Closed wing; ... Variable-incidence wing; Vortex generator; W. Wake turbulence;
Nose, wing and ventral strakes Vortices over the wing strakes of an F/A-18E Super Hornet. In aviation, a strake is an aerodynamic surface generally mounted on the fuselage of an aircraft to improve the flight characteristics either by controlling the airflow (acting as large vortex generators) or by a simple stabilising effect.
The profile was designed in 1922 by Virginius E. Clark using thickness distribution of the German-developed Goettingen 398 airfoil. [1] The airfoil has a thickness of 11.7 percent and is flat on the lower surface aft of 30 percent of chord. The flat bottom simplifies angle measurements on propellers, and makes for easy construction of wings.