enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Archimedes' principle - Wikipedia

    en.wikipedia.org/wiki/Archimedes'_principle

    Taking the pressure as zero at the surface, where z is zero, the constant will be zero, so the pressure inside the fluid, when it is subject to gravity, is =. So pressure increases with depth below the surface of a liquid, as z denotes the distance from the surface of the liquid into it. Any object with a non-zero vertical depth will have ...

  3. Bernoulli's principle - Wikipedia

    en.wikipedia.org/wiki/Bernoulli's_principle

    If the static pressure of the system (the third term) increases, and if the pressure due to elevation (the middle term) is constant, then the dynamic pressure (the first term) must have decreased. In other words, if the speed of a fluid decreases and it is not due to an elevation difference, it must be due to an increase in the static pressure ...

  4. Pressure-gradient force - Wikipedia

    en.wikipedia.org/wiki/Pressure-gradient_force

    In fluid mechanics, the pressure-gradient force is the force that results when there is a difference in pressure across a surface. In general, a pressure is a force per unit area across a surface. A difference in pressure across a surface then implies a difference in force, which can result in an acceleration according to Newton's second law of ...

  5. Dynamic pressure - Wikipedia

    en.wikipedia.org/wiki/Dynamic_pressure

    Dynamic pressure is one of the terms of Bernoulli's equation, which can be derived from the conservation of energy for a fluid in motion. [1] At a stagnation point the dynamic pressure is equal to the difference between the stagnation pressure and the static pressure, so the dynamic pressure in a flow field can be measured at a stagnation point ...

  6. Vertical pressure variation - Wikipedia

    en.wikipedia.org/wiki/Vertical_pressure_variation

    Vertical pressure variation is the variation in pressure as a function of elevation.Depending on the fluid in question and the context being referred to, it may also vary significantly in dimensions perpendicular to elevation as well, and these variations have relevance in the context of pressure gradient force and its effects.

  7. Hydrostatics - Wikipedia

    en.wikipedia.org/wiki/Hydrostatics

    where ρ is the density of the fluid, g is the acceleration due to gravity, and V is the volume of fluid directly above the curved surface. [8] In the case of a ship, for instance, its weight is balanced by pressure forces from the surrounding water, allowing it to float. If more cargo is loaded onto the ship, it would sink more into the water ...

  8. Shallow water equations - Wikipedia

    en.wikipedia.org/wiki/Shallow_water_equations

    The pressure gradient term (c) describes how pressure changes with position, and since the pressure is assumed hydrostatic, this is the change in head over position. The friction term (d) accounts for losses in energy due to friction, while the gravity term (e) is the acceleration due to bed slope.

  9. Pascal's law - Wikipedia

    en.wikipedia.org/wiki/Pascal's_law

    Pressure in water and air. Pascal's law applies for fluids. Pascal's principle is defined as: A change in pressure at any point in an enclosed incompressible fluid at rest is transmitted equally and undiminished to all points in all directions throughout the fluid, and the force due to the pressure acts at right angles to the enclosing walls.