enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spectral flux density - Wikipedia

    en.wikipedia.org/wiki/Spectral_flux_density

    Spectral flux density. In spectroscopy, spectral flux density is the quantity that describes the rate at which energy is transferred by electromagnetic radiation through a real or virtual surface, per unit surface area and per unit wavelength (or, equivalently, per unit frequency). It is a radiometric rather than a photometric measure.

  3. Fick's laws of diffusion - Wikipedia

    en.wikipedia.org/wiki/Fick's_laws_of_diffusion

    Fick's first law relates the diffusive flux to the gradient of the concentration. It postulates that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative), or in simplistic terms the concept that a solute will move from a region of high concentration to a region of low ...

  4. Probability current - Wikipedia

    en.wikipedia.org/wiki/Probability_current

    v. t. e. In quantum mechanics, the probability current (sometimes called probability flux) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time.

  5. Goldman–Hodgkin–Katz flux equation - Wikipedia

    en.wikipedia.org/wiki/Goldman–Hodgkin–Katz...

    The Goldman–Hodgkin–Katz flux equation (or GHK flux equation or GHK current density equation) describes the ionic flux across a cell membrane as a function of the transmembrane potential and the concentrations of the ion inside and outside of the cell. Since both the voltage and the concentration gradients influence the movement of ions ...

  6. Poynting vector - Wikipedia

    en.wikipedia.org/wiki/Poynting_vector

    The density of the linear momentum of the electromagnetic field is S/c 2 where S is the magnitude of the Poynting vector and c is the speed of light in free space. The radiation pressure exerted by an electromagnetic wave on the surface of a target is given by P r a d = S c . {\displaystyle P_{\mathrm {rad} }={\frac {\langle S\rangle }{\mathrm ...

  7. Schwarzschild's equation for radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild's_equation...

    Several sources [2] [12] [3] replace nσ λ with k λ r, where k λ is the absorption coefficient per unit density and r is the density of the gas. The absorption coefficient for spectral flux (a beam of radiation with a single wavelength, [W/m 2 /μm]) differs from the absorption coefficient for spectral intensity [W/sr/m 2 /μm] used in ...

  8. Finite volume method for one-dimensional steady state diffusion

    en.wikipedia.org/wiki/Finite_volume_method_for...

    The Finite volume method in computational fluid dynamics is a discretization technique for partial differential equations that arise from physical conservation laws. These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos.

  9. Radiative flux - Wikipedia

    en.wikipedia.org/wiki/Radiative_flux

    Radiative flux. Radiative flux, also known as radiative flux density or radiation flux (or sometimes power flux density[1]), is the amount of power radiated through a given area, in the form of photons or other elementary particles, typically measured in W/m 2. [2] It is used in astronomy to determine the magnitude and spectral class of a star ...