Search results
Results from the WOW.Com Content Network
The Dirichlet function is not Riemann-integrable on any segment of despite being bounded because the set of its discontinuity points is not negligible (for the Lebesgue measure). The Dirichlet function provides a counterexample showing that the monotone convergence theorem is not true in the context of the Riemann integral.
Fixing an integer k ≥ 1, the Dirichlet L-functions for characters modulo k are linear combinations, with constant coefficients, of the ζ(s,a) where a = r/k and r = 1, 2, ..., k. This means that the Hurwitz zeta function for rational a has analytic properties that are closely related to the Dirichlet L-functions.
The convolution of D n (x) with any function f of period 2 π is the nth-degree Fourier series approximation to f, i.e., we have () = () = = ^ (), where ^ = is the k th Fourier coefficient of f. This implies that in order to study convergence of Fourier series it is enough to study properties of the Dirichlet kernel.
Let σ 0 (n) be the divisor-counting function, and let D(n) be its summatory function: = = (). Computing D(n) naïvely requires factoring every integer in the interval [1, n]; an improvement can be made by using a modified Sieve of Eratosthenes, but this still requires Õ(n) time.
When α=1, the symmetric Dirichlet distribution is equivalent to a uniform distribution over the open standard (K − 1)-simplex, i.e. it is uniform over all points in its support. This particular distribution is known as the flat Dirichlet distribution.
Dirichlet also studied the first boundary-value problem, for the Laplace equation, proving the uniqueness of the solution; this type of problem in the theory of partial differential equations was later named the Dirichlet problem after him. A function satisfying a partial differential equation subject to the Dirichlet boundary conditions must ...
By the transfer principle, the natural extension of the Dirichlet function takes the value 1 at a n. Note that the hyperrational point a n is infinitely close to π. Thus the natural extension of the Dirichlet function takes different values (0 and 1) at these two infinitely close points, and therefore the Dirichlet function is not continuous ...
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...