enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pointwise convergence - Wikipedia

    en.wikipedia.org/wiki/Pointwise_convergence

    This concept is often contrasted with uniform convergence.To say that = means that {| () |:} =, where is the common domain of and , and stands for the supremum.That is a stronger statement than the assertion of pointwise convergence: every uniformly convergent sequence is pointwise convergent, to the same limiting function, but some pointwise convergent sequences are not uniformly convergent.

  3. Dini's theorem - Wikipedia

    en.wikipedia.org/wiki/Dini's_theorem

    This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. The limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous.

  4. Modes of convergence - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence

    Uniform convergence implies both local uniform convergence and compact convergence, since both are local notions while uniform convergence is global. If X is locally compact (even in the weakest sense: every point has compact neighborhood), then local uniform convergence is equivalent to compact (uniform) convergence. Roughly speaking, this is ...

  5. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    A sequence of functions () converges uniformly to when for arbitrary small there is an index such that the graph of is in the -tube around f whenever . The limit of a sequence of continuous functions does not have to be continuous: the sequence of functions () = ⁡ (marked in green and blue) converges pointwise over the entire domain, but the limit function is discontinuous (marked in red).

  6. Convergence of Fourier series - Wikipedia

    en.wikipedia.org/wiki/Convergence_of_Fourier_series

    then (S n f)(x 0) converges to ℓ. This implies that for any function f of any Hölder class α > 0, the Fourier series converges everywhere to f(x). It is also known that for any periodic function of bounded variation, the Fourier series converges. In general, the most common criteria for pointwise convergence of a periodic function f are as ...

  7. Equicontinuity - Wikipedia

    en.wikipedia.org/wiki/Equicontinuity

    For pointwise equicontinuity, δ may depend on ε and x 0. For uniform equicontinuity, δ may depend only on ε. More generally, when X is a topological space, a set F of functions from X to Y is said to be equicontinuous at x if for every ε > 0, x has a neighborhood U x such that ((), ()) <

  8. Modes of convergence (annotated index) - Wikipedia

    en.wikipedia.org/wiki/Modes_of_convergence...

    Guide to this index. To avoid excessive verbiage, note that each of the following types of objects is a special case of types preceding it: sets, topological spaces, uniform spaces, topological abelian groups (TAG), normed vector spaces, Euclidean spaces, and the real/complex numbers.

  9. Arzelà–Ascoli theorem - Wikipedia

    en.wikipedia.org/wiki/Arzelà–Ascoli_theorem

    Let X be a compact Hausdorff space and Y a metric space. Then F ⊂ C(X, Y) is compact in the compact-open topology if and only if it is equicontinuous, pointwise relatively compact and closed. Here pointwise relatively compact means that for each xX, the set F x = { f (x) : f ∈ F} is relatively compact in Y.