Search results
Results from the WOW.Com Content Network
In mechanical engineering, an eccentric is a circular disk (eccentric sheave) solidly fixed to a rotating axle with its centre offset from that of the axle (hence the word "eccentric", out of the center). [1] It is used most often in steam engines, and used to convert rotary motion into linear reciprocating motion to drive a sliding valve or ...
For example, on a triaxial ellipsoid, the meridional eccentricity is that of the ellipse formed by a section containing both the longest and the shortest axes (one of which will be the polar axis), and the equatorial eccentricity is the eccentricity of the ellipse formed by a section through the centre, perpendicular to the polar axis (i.e. in ...
The mean eccentricity of an object is the average eccentricity as a result of perturbations over a given time period. Neptune currently has an instant (current epoch ) eccentricity of 0.011 3 , [ 13 ] but from 1800 to 2050 has a mean eccentricity of 0.008 59 .
where M is the mean anomaly, E is the eccentric anomaly, and is the eccentricity. With Kepler's formula, finding the time-of-flight to reach an angle (true anomaly) of from periapsis is broken into two steps: Compute the eccentric anomaly from true anomaly
Horizontal eccentricity, in vision, degrees of visual angle from the center of the eye; Eccentric contraction, the lengthening of muscle fibers; Eccentric position of a surveying tripod, to be able to measure hidden points; Eccentric training, the motion of an active muscle while it is lengthening under load; Eccentricity, a deviation from ...
The eccentric anomaly is one of three angular parameters ("anomalies") that define a position along an orbit, the other two being the true anomaly and the mean anomaly. Eccentricity vector – In celestial mechanics, the eccentricity vector of a Kepler orbit is the dimensionless vector with direction pointing from apoapsis to periapsis and with ...
Ellipses are common in physics, astronomy and engineering. For example, the orbit of each planet in the Solar System is approximately an ellipse with the Sun at one focus point (more precisely, the focus is the barycenter of the Sun–planet pair). The same is true for moons orbiting planets and all other systems of two astronomical bodies.
The eccentricity e is defined as: = . From Pythagoras's theorem applied to the triangle with r (a distance FP) as hypotenuse: = + () = () + ( + ) = + = () Thus, the radius (distance from the focus to point P) is related to the eccentric anomaly by the formula