Search results
Results from the WOW.Com Content Network
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic ...
The discriminant of K is 49 = 7 2. Accordingly, the volume of the fundamental domain is 7 and K is only ramified at 7. In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field.
This version of the quadratic formula is used in Muller's method for finding the roots of general functions. It can be derived from the standard formula from the identity x 1 x 2 = c / a {\displaystyle x_{1}x_{2}=c/a} , one of Vieta's formulas .
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
Let D be the discriminant of the field, n be the degree of K over , and = be the number of complex embeddings where is the number of real embeddings.Then every class in the ideal class group of K contains an integral ideal of norm not exceeding Minkowski's bound
Using the formula relating the general cubic and the associated depressed cubic, this implies that the discriminant of the general cubic can be written as (+). It follows that one of these two discriminants is zero if and only if the other is also zero, and, if the coefficients are real , the two discriminants have the same sign.
Its square is widely called the discriminant, though some sources call the Vandermonde polynomial itself the discriminant. The discriminant (the square of the Vandermonde polynomial: Δ = V n 2 {\displaystyle \Delta =V_{n}^{2}} ) does not depend on the order of terms, as ( − 1 ) 2 = 1 {\displaystyle (-1)^{2}=1} , and is thus an invariant of ...
The discriminant of a quadratic form, concretely the class of the determinant of a representing matrix in K / (K ×) 2 (up to non-zero squares) can also be defined, and for a real quadratic form is a cruder invariant than signature, taking values of only "positive, zero, or negative".