enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Radioisotope renography - Wikipedia

    en.wikipedia.org/wiki/Radioisotope_renography

    The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...

  3. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Radioactive iodine (iodine-131) alone can potentially worsen thyrotoxicosis in the first few days after treatment. One side effect of treatment is an initial period of a few days of increased hyperthyroid symptoms. This occurs because when the radioactive iodine destroys the thyroid cells, they can release thyroid hormone into the blood stream.

  4. Saul Hertz - Wikipedia

    en.wikipedia.org/wiki/Saul_Hertz

    The Journal of the American Medical Association published “Radioactive Iodine in the Study of Thyroid Physiology" with Hertz as lead author in its May 1946 issue. This article was a five-year follow-up study of the 29 patients, and it documented the successful treatment and safety of radioactive iodine for the treatment of hyperthyroidism ...

  5. Radioactive iodine uptake test - Wikipedia

    en.wikipedia.org/wiki/Radioactive_iodine_uptake_test

    The patient swallows a radioisotope of iodine in the form of capsule or fluid, and the absorption (uptake) of this radiotracer by the thyroid is studied after 4–6 hours and after 24 hours with the aid of a scintillation counter. The dose is typically 0.15–0.37 MBq (4–10 μCi) of 131 I iodide, or 3.7–7.4 MBq (100–200 μCi) of 123 I ...

  6. Radioligand - Wikipedia

    en.wikipedia.org/wiki/Radioligand

    Often called the father of nuclear medicine, Lawrence treated a leukemia patient with radiophosphorus, which was the first time a radioactive isotope has been used to treat human patients. [4] Another pioneer in the field, Sam Seidlin, in partnership with Saul Hertz, treated a case of thyroid cancer with radioactive iodine (I-131) 1946. [5]

  7. Fission products (by element) - Wikipedia

    en.wikipedia.org/wiki/Fission_products_(by_element)

    131 I, with a half-life of 8 days, is a hazard from nuclear fallout because iodine concentrates in the thyroid gland. See also Radiation effects from Fukushima Daiichi nuclear disaster#Iodine-131 and Downwinders#Nevada. In common with 89 Sr, 131 I is used for the treatment of cancer.

  8. Iodine-123 - Wikipedia

    en.wikipedia.org/wiki/Iodine-123

    Iodine-123 (123 I) is a radioactive isotope of iodine used in nuclear medicine imaging, including single-photon emission computed tomography (SPECT) or SPECT/CT exams. The isotope's half-life is 13.2232 hours; [1] the decay by electron capture to tellurium-123 emits gamma radiation with a predominant energy of 159 keV (this is the gamma primarily used for imaging).

  9. Thyroid blocker - Wikipedia

    en.wikipedia.org/wiki/Thyroid_blocker

    If a person consumes a dose of one of these chemical compounds, his or her thyroid may saturate with stable iodine, preventing accumulation of radioactive iodine found after a nuclear meltdown or explosion.