enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iodine-131 - Wikipedia

    en.wikipedia.org/wiki/Iodine-131

    Iodine-131 (131 I, I-131) is an important radioisotope of iodine discovered by Glenn Seaborg and John Livingood in 1938 at the University of California, Berkeley. [3] It has a radioactive decay half-life of about eight days. It is associated with nuclear energy, medical diagnostic and treatment procedures, and natural gas production.

  3. Nuclear and radiation accidents and incidents - Wikipedia

    en.wikipedia.org/wiki/Nuclear_and_radiation...

    9 August 2004: Mihama Nuclear Power Plant accident, 4 fatalities. Hot water and steam leaked from a broken pipe (not actually a radiation accident). [95] 9 May 2005: it was announced that the Thermal Oxide Reprocessing Plant at Sellafield in the UK suffered a leak of a highly radioactive solution, into secondary containment. [96] 2010s

  4. Radiation damage - Wikipedia

    en.wikipedia.org/wiki/Radiation_damage

    Radiation can have harmful effects on solid materials as it can degrade their properties so that they are no longer mechanically sound. This is of special concern as it can greatly affect their ability to perform in nuclear reactors and is the emphasis of radiation material science, which seeks to mitigate this danger.

  5. Radiation effects from the Fukushima Daiichi nuclear disaster

    en.wikipedia.org/wiki/Radiation_effects_from_the...

    The radiation effects from the Fukushima Daiichi nuclear disaster are the observed and predicted effects as a result of the release of radioactive isotopes from the Fukushima Daiichii Nuclear Power Plant following the 2011 Tōhoku 9.0 magnitude earthquake and tsunami (Great East Japan Earthquake and the resultant tsunami).

  6. Fukushima nuclear accident casualties - Wikipedia

    en.wikipedia.org/wiki/Fukushima_nuclear_accident...

    Radioactive iodine, which can lead to increased risk of thyroid cancer if absorbed into the body, was released into the air along with other fission products. To counteract the radioactive iodine the distribution of potassium iodide is used, as it prevents the absorption of the potentially dangerous radioisotopes of that element.

  7. Radioisotope renography - Wikipedia

    en.wikipedia.org/wiki/Radioisotope_renography

    The test was first introduced in 1956, using iodine-131 diodrast. [25] [26] Later developments included iodine-131, and then iodine-123, labelled ortho-Iodohippuric acid (OIH, marketed as Hippuran). [27] [28] 99m Tc-MAG3 has replaced 131 I-OIH because of better quality imaging regardless of the level of kidney function, [29] and lower radiation ...

  8. Iodine-129 - Wikipedia

    en.wikipedia.org/wiki/Iodine-129

    129 I is one of the seven long-lived fission products that are produced in significant amounts. Its yield is 0.706% per fission of 235 U. [7] Larger proportions of other iodine isotopes such as 131 I are produced, but because these all have short half-lives, iodine in cooled spent nuclear fuel consists of about 5/6 129 I and 1/6 the only stable iodine isotope, 127 I.

  9. Radioactive contamination - Wikipedia

    en.wikipedia.org/wiki/Radioactive_contamination

    Radioactive iodine-131 is a common fission product; it was a major component of the radioactivity released from the Chernobyl disaster, leading to nine fatal cases of pediatric thyroid cancer and hypothyroidism. On the other hand, radioactive iodine is used in the diagnosis and treatment of many diseases of the thyroid precisely because of the ...