Search results
Results from the WOW.Com Content Network
The same goes for shear viscosity. For a Newtonian fluid the shear viscosity is a pure fluid property, but for a non-Newtonian fluid it is not a pure fluid property due to its dependence on the velocity gradient. Neither shear nor volume viscosity are equilibrium parameters or properties, but transport properties.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water. Viscosity is measured using a viscometer. Measured values span several orders of magnitude.
How much the volume viscosity contributes to the flow characteristics in e.g. a choked flow such as convergent-divergent nozzle or valve flow is not well known, but the shear viscosity is by far the most utilized viscosity coefficient. The volume viscosity will now be abandoned, and the rest of the article will focus on the shear viscosity.
Under high shear rates, the water is squeezed out from between the starch molecules, which are able to interact more strongly, enormously increasing the viscosity. While not strictly a dilatant fluid, Silly Putty (viscoelastic fluid) is an example of a material that shares these viscosity characteristics.
Trouton's ratio is the ratio of extensional viscosity to shear viscosity. For a Newtonian fluid, the Trouton ratio is 3. [21] [22] Shear-thinning liquids are very commonly, but misleadingly, described as thixotropic. [23] Viscosity may also depend on the fluid's physical state (temperature and pressure) and other, external, factors.
Rheopecty: The longer the fluid is subjected to a shear strain, the higher the viscosity. Time-dependent shear thickening behavior. Thixotropy: The longer a fluid is subjected to a shear strain, the lower its viscosity. It is a time-dependent shear thinning behavior. Shear thickening: Similar to rheopecty, but independent of the passage of time.
Where: , , and are material coefficients: is the viscosity at zero shear rate (Pa.s), is the viscosity at infinite shear rate (Pa.s), is the characteristic time (s) and power index. The dynamics of fluid motions is an important area of physics, with many important and commercially significant applications.
The viscosity index (VI) is an arbitrary, unit-less measure of a fluid's change in viscosity relative to temperature change. It is mostly used to characterize the viscosity-temperature behavior of lubricating oils. The lower the VI, the more the viscosity is affected by changes in temperature.