enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Two-body problem in general relativity - Wikipedia

    en.wikipedia.org/wiki/Two-body_problem_in...

    His answer came in his law of universal gravitation, which states that the force between a mass M and another mass m is given by the formula =, where r is the distance between the masses and G is the gravitational constant. Given this force law and his equations of motion, Newton was able to show that two point masses attracting each other ...

  3. Planetary hours - Wikipedia

    en.wikipedia.org/wiki/Planetary_hours

    The planetary hours are an ancient system in which one of the seven classical planets is given rulership over each day and various parts of the day. Developed in Hellenistic astrology , it has possible roots in older Babylonian astrology , and it is the origin of the names of the days of the week as used in English and numerous other languages.

  4. Sunrise equation - Wikipedia

    en.wikipedia.org/wiki/Sunrise_equation

    A contour plot of the hours of daylight as a function of latitude and day of the year, using the most accurate models described in this article. It can be seen that the area of constant day and constant night reach up to the polar circles (here labeled "Anta. c." and "Arct. c."), which is a consequence of the earth's inclination.

  5. Equation of time - Wikipedia

    en.wikipedia.org/wiki/Equation_of_time

    An article by Brian Tung containing a link to a C program using a more accurate formula than most (particularly at high inclinations and eccentricities). The program can calculate solar declination, Equation of Time, or Analemma; Doing calculations using Ptolemy's geocentric planetary models with a discussion of his E.T. graph

  6. Astronomical coordinate systems - Wikipedia

    en.wikipedia.org/wiki/Astronomical_coordinate...

    Angles in the hours ( h), minutes ( m), and seconds ( s) of time measure must be converted to decimal degrees or radians before calculations are performed. 1 h = 15°; 1 m = 15′; 1 s = 15″ Angles greater than 360° (2 π ) or less than 0° may need to be reduced to the range 0°−360° (0–2 π ) depending upon the particular calculating ...

  7. Kepler's equation - Wikipedia

    en.wikipedia.org/wiki/Kepler's_equation

    As for instance, if the body passes the periastron at coordinates = (), =, at time =, then to find out the position of the body at any time, you first calculate the mean anomaly from the time and the mean motion by the formula = (), then solve the Kepler equation above to get , then get the coordinates from:

  8. Titius–Bode law - Wikipedia

    en.wikipedia.org/wiki/Titius–Bode_law

    Finally, raw statistics from exoplanetary orbits strongly point to a general fulfillment of Titius-Bode-like laws (with exponential increase of semi-major axes as a function of planetary index) in all the exoplanetary systems; when making a blind histogram of orbital semi-major axes for all the known exoplanets for which this magnitude is known ...

  9. Celestial mechanics - Wikipedia

    en.wikipedia.org/wiki/Celestial_mechanics

    More recently, it has also become useful to calculate spacecraft trajectories. Henri Poincaré published two now classical monographs, "New Methods of Celestial Mechanics" (1892–1899) and "Lectures on Celestial Mechanics" (1905–1910). In them, he successfully applied the results of their research to the problem of the motion of three bodies ...