Search results
Results from the WOW.Com Content Network
The Harris–Benedict equation (also called the Harris-Benedict principle) is a method used to estimate an individual's basal metabolic rate (BMR).. The estimated BMR value may be multiplied by a number that corresponds to the individual's activity level; the resulting number is the approximate daily kilocalorie intake to maintain current body weight.
BMR is a flexible trait (it can be reversibly adjusted within individuals), with, for example, lower temperatures generally resulting in higher basal metabolic rates for both birds [7] and rodents. [8] There are two models to explain how BMR changes in response to temperature: the variable maximum model (VMM) and variable fraction model (VFM).
The Schofield Equation is a method of estimating the basal metabolic rate (BMR) of adult men and women published in 1985. [1] This is the equation used by the WHO in their technical report series. [2] The equation that is recommended to estimate BMR by the US Academy of Nutrition and Dietetics is the Mifflin-St. Jeor equation. [3]
You can use an online calculator to determine your BMR using the Mifflin-St. Jeor equation or do the equation yourself. Mifflin-St. Jeor equation for men and women Men: (10 x weight in kg) + (6.25 ...
In the review organized by the USDA, [15] most publications documented specific conditions of resting measurements, including time from latest food intake or physical activities; this comprehensive review estimated RMR is 10 – 20% higher than BMR due to thermic effect of feeding and residual burn from activities that occur throughout the day.
The respiratory quotient (RQ or respiratory coefficient) is a dimensionless number used in calculations of basal metabolic rate (BMR) when estimated from carbon dioxide production. It is calculated from the ratio of carbon dioxide produced by the body to oxygen consumed by the body, when the body is in a steady state.
Respirometry depends on a "what goes in must come out" principle. [6] Consider a closed system first. Imagine that we place a mouse into an air-tight container. The air sealed in the container initially contains the same composition and proportions of gases that were present in the room: 20.95% O 2, 0.04% CO 2, water vapor (the exact amount depends on air temperature, see dew point), 78% ...
Some of the most popular and accurate equations used to calculate BMR are the original Harris-Benedict equations, the revised Harris-Benedict equations, and the Mifflin St. Jeor equation. [19] The original Harris-Benedict Equations are as follows: BMR (Males) in Kcals/day = 66.47 + 13.75 (weight in kg) + 5.0 (height in cm) - 6.76 (age in years)